946 resultados para automatic data entry
Resumo:
This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.
Resumo:
A method for automatic scaling of oblique ionograms has been introduced. This method also provides a rejection procedure for ionograms that are considered to lack sufficient information, depicting a very good success rate. Observing the Kp index of each autoscaled ionogram, can be noticed that the behavior of the autoscaling program does not depend on geomagnetic conditions. The comparison between the values of the MUF provided by the presented software and those obtained by an experienced operator indicate that the procedure developed for detecting the nose of oblique ionogram traces is sufficiently efficient and becomes much more efficient as the quality of the ionograms improves. These results demonstrate the program allows the real-time evaluation of MUF values associated with a particular radio link through an oblique radio sounding. The automatic recognition of a part of the trace allows determine for certain frequencies, the time taken by the radio wave to travel the path between the transmitter and receiver. The reconstruction of the ionogram traces, suggests the possibility of estimating the electron density between the transmitter and the receiver, from an oblique ionogram. The showed results have been obtained with a ray-tracing procedure based on the integration of the eikonal equation and using an analytical ionospheric model with free parameters. This indicates the possibility of applying an adaptive model and a ray-tracing algorithm to estimate the electron density in the ionosphere between the transmitter and the receiver An additional study has been conducted on a high quality ionospheric soundings data set and another algorithm has been designed for the conversion of an oblique ionogram into a vertical one, using Martyn's theorem. This allows a further analysis of oblique soundings, throw the use of the INGV Autoscala program for the automatic scaling of vertical ionograms.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
Polymere Nanopartikel sind kleine Teilchen, die vielseitige Einsatzmöglichkeiten für den Transport von Wirkstoffen bieten. Da Nanomaterialien in diesen biomedizinischen Anwendungen oft mit biologischen Systemen in Berührung kommen, erfordert das eine genaue Untersuchung ihrer gegenseitigen Wechselwirkungen. In diesem speziellen Forschungsgebiet, welches sich auf die Interaktionen von Nanomaterialien mit biologischen Komponenten konzentriert, wurde bereits eine Vielzahl verschiedener Nanopartikel-Zell-Interaktionen (z. B. Nanotoxizität, Wirkstofftransport-mechanismen) analysiert. Bezüglich der Untersuchungen zu nanopartikulären Wirkstofftransport-mechanismen ist es im Allgemeinen akzeptiert, dass ein erfolgreicher zellulärer Transport hauptsächlich von der Aufnahme des Nanotransporters abhängt. Deshalb analysieren wir in dieser Arbeit (1) den Wirkstofftransportmechanismus für biologisch-abbaubare eisenhaltige Poly-L-Milchsäure Nanopartikel (PLLA-Fe-PMI) sowie (2) die Aufnahmemechanismen und die intrazellulären Transportwege von nicht-abbaubaren superparamagnetischen Polystyrolnanopartikeln (SPIOPSN). rnIn dieser Arbeit identifizieren wir einen bisher unbekannten und nicht-invasiven Wirkstoff-transportmechanismus. Dabei zeigt diese Studie, dass der subzelluläre Transport der nanopartikulärer Fracht nicht unbedingt von einer Aufnahme der Nanotransporter abhängt. Der identifizierte Arzneimitteltransportmechanismus basiert auf einem einfachen physikochemischen Kontakt des hydrophoben Poly-L-Milchsäure-Nanopartikels mit einer hydrophoben Oberfläche, wodurch die Freisetzung der nanopartikulären Fracht ausgelöst wird. In Zellexperimenten führt die membranvermittelte Freisetzung der nanopartikulären Fracht zu ihrem sofortigen Transport in TIP47+- und ADRP+- Lipidtröpfchen. Der Freisetzungsmechanismus („kiss-and-run") kann durch die kovalente Einbindung des Frachtmoleküls in das Polymer des Nanopartikels blockiert werden.rnWeiterhin wird in Langzeitversuchen gezeigt, dass die Aufnahme der untersuchten polymeren Nanopartikel von einem Makropinozytose-ähnlichen Mechanismus gesteuert wird. Im Laufe dieser Arbeit werden mehrere Faktoren identifiziert, die in diesem Aufnahmemechanismus eine Rolle spielen. Darunter fallen unter anderem die kleinen GTPasen Rac1 und ARF1, die die Aufnahme von SPIOPSN beeinflussen. Darauffolgend werden die intrazellulären Transportwege der Nanopartikel untersucht. Mit Hilfe eines neuartigen Massenspektrometrieansatzes wird der intrazelluläre Transport von nanopartikelhaltigen endozytotischen Vesikeln rekonstruiert. Intensive Untersuchungen identifizieren Marker von frühen Endosomen, späten Endosomen/ multivesikulären Körpern, Rab11+- Endosomen, Flotillin-Vesikeln, Lysosomen und COP-Vesikeln. Schließlich wird der Einfluss des lysosomalen Milieus auf die Proteinhülle der Nanopartikel untersucht. Hier wird gezeigt, dass die adsorbierte Proteinhülle auf den Nanopartikeln in die Zelle transportiert wird und anschließend im Lysosom abgebaut wird. rnInsgesamt verdeutlicht diese Arbeit, dass die klassische Strategie des nanopartikulären und invasiven Wirkstofftransportmechanismuses überdacht werden muss. Weiterhin lässt sich aus den Daten schlussfolgern, dass polymere Nanopartikel einem atypischen Makropinozytose-ähnlichen Aufnahmemechanismus unterliegen. Dies resultiert in einem intrazellulären Transport der Nanopartikel von Makropinosomen über multivesikuläre Körperchen zu Lysosomen.rn
Resumo:
Sviluppo e analisi di un dataset campione, composto da circa 3 mln di entry ed estratto da un data warehouse di informazioni riguardanti il consumo energetico di diverse smart home.
Resumo:
Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.
Resumo:
Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative
Resumo:
The objective of this study was to characterize empirically the association between vaccination coverage and the size and occurrence of measles epidemics in Germany. In order to achieve this we analysed data routinely collected by the Robert Koch Institute, which comprise the weekly number of reported measles cases at all ages as well as estimates of vaccination coverage at the average age of entry into the school system. Coverage levels within each federal state of Germany are incorporated into a multivariate time-series model for infectious disease counts, which captures occasional outbreaks by means of an autoregressive component. The observed incidence pattern of measles for all ages is best described by using the log proportion of unvaccinated school starters in the autoregressive component of the model.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
With improvements in acquisition speed and quality, the amount of medical image data to be screened by clinicians is starting to become challenging in the daily clinical practice. To quickly visualize and find abnormalities in medical images, we propose a new method combining segmentation algorithms with statistical shape models. A statistical shape model built from a healthy population will have a close fit in healthy regions. The model will however not fit to morphological abnormalities often present in the areas of pathologies. Using the residual fitting error of the statistical shape model, pathologies can be visualized very quickly. This idea is applied to finding drusen in the retinal pigment epithelium (RPE) of optical coherence tomography (OCT) volumes. A segmentation technique able to accurately segment drusen in patients with age-related macular degeneration (AMD) is applied. The segmentation is then analyzed with a statistical shape model to visualize potentially pathological areas. An extensive evaluation is performed to validate the segmentation algorithm, as well as the quality and sensitivity of the hinting system. Most of the drusen with a height of 85.5 microm were detected, and all drusen at least 93.6 microm high were detected.
Resumo:
Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.
Resumo:
OBJECTIVE: Besides DNA, dental radiographs play a major role in the identification of victims in mass casualties or in corpses with major postmortem alterations. Computed tomography (CT) is increasingly applied in forensic investigations and is used to scan the dentition of deceased persons within minutes. We investigated different restoration materials concerning their radiopacity in CT for dental identification purposes. METHODS: Extracted teeth with different filling materials (composite, amalgam, ceramic, temporary fillings) were CT scanned. Radiopacities of the filling materials were analyzed in extended CT scale images. RESULTS: Radiopacity values ranged from 6000-8500HU (temporary fillings), 4500-17000HU (composite fillings) and >30710HU (Amalgam and Gold). The values were used to define presets for a 3D colored volume rendering software. CONCLUSIONS: The effects of filling material caused streak artifacts could be distinctively reduced for the assessment of the dental status and a postprocessing algorithm was introduced that allows for 3D color encoded visualization and discrimination of different dental restorations based on postmortem CT data.
Resumo:
Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.
Resumo:
Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validity