911 resultados para aggregated multicast
Resumo:
The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.
Resumo:
As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.
Resumo:
Abstract: We sampled ticks from specimens of the rococo toad Rhinella schneideriby flannel dragging on two Islands located in the São Francisco River near the Três Marias hydroelectric dam, southeastern Brazil. A total of 120 toads was examined, of which 63 (52.5%) were parasitized only by Amblyomma rotundatumtotaling 96 larvae, 163 nymphs and 134 females. The burden of parasitism ranged from one to 43 ticks, with a mean intensity of infestation of 6.2±5.5 ticks per host. The tick A. rotundatumexhibited highly aggregated distribution. Peak abundance of larvae and nymphs occurred in the dry season (May to September), whereas peak abundance of females occurred in the wet season (October to April). We collected most ticks near the head and hind limbs of R. schneideri. The finding of two engorged A. rotundatumnymphs in the same resting places of two toads and the absence of this species in the dragged areas suggest a nidicolous behavior at the studied site.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.
Resumo:
A study on the spatial distribution of the major weeds in maize was carried out in 2007 and 2008 in a field located in Golegã (Ribatejo region, Portugal). The geo-referenced sampling focused on 150 points of a 10 x 10 m mesh covering an area of 1.5 ha, before herbicide application and before harvest. In the first year, 40 species (21 botanical families) were identified at seedling stage and only 22 during the last observation. The difference in species richness can be attributed to maize monoculture favouring reduction in species number. Three of the most representative species were selected for the spatial distribution analysis: Solanum nigrum, Chenopodium album and Echinochloa crus-galli. The three species showed an aggregated spatial pattern and spatial stability over both years, although the herbicide effect is evident in the distribution of some of them in the space. These results could be taken into account when planning site-specific treatments in maize.
Resumo:
ABSTRACT - (Phenology, fruit set and dispersal of Cordia multispicata Cham., an important weed shrub of abandoned pastures in eastern Amazonia). The reproductive ecology of the distylous tropical shrub Cordia multispicata was studied in an abandoned pasture in Paragominas County , Pará state, Brazil. It is a common species in the Amazon basin where it occurs as a weed in open and disturbed habitats. C. multispicata has many flowers per inflorescence (85 ± 12) but 84% abort before fertilization. Flowering occurs throughout the year. Fruits are small, with a red fleshy pericarp (skin-pulp) attractive to birds. Fruit set is lower during the dry season (less than 30%) and higher during the rainy season when there are many visits of insects to the flowers. Fruiting has a peak between the end of the dry season and the middle of the rainy season. Nineteen bird species were observed foraging for the fruits of C. multispicata, and 79% of those species can be considered as potential dispersal agents. The efficient seed dispersal and aggregated spatial distribution associated with some characteristics of the dispersors greatly contributed to the success of this species in abandoned pastures of eastern Amazonia.
Resumo:
In bromeliad populations, amount of light and available substrates influence individuals spatial organization. In Atlantic Rainforest of Ilha Grande, the heliophylous bromeliad Neoregelia johannis is a large and abundant species. In this forest, it would be expected that N. johannis would occupy stable substrates, as large trunks, large branches, rock boulders or ground, with high sunlight, enough for the bromeliad survivor. In the present work, we analyzed the distribution and most used substrates of N. johannis in secondary forest. We analyzed the frequency of reproductive modes (sexual and vegetative) used by the bromeliad shoots, registering if the shoots were originated from seeds or by vegetative reproduction. The results indicated an aggregated distribution pattern (Ip = 0.052). The preferred substrate was boulders (91%), whereas tree trunks (6%) and the ground (3%) were rarely used. Small and fragile substrates are unstable to support large adults of this species, which may explain the predominant pattern of establishment over boulders within the secondary forest, as the presence of this substrate also results in more opened canopy cover. Approximately 50% of young individuals entered the population by vegetative reproduction. We conclude that the preferential habit and the aggregated distribution of N. johannis are due to the conjunction of preferred substrate with higher amount of light resulting from breaks in tree canopy over areas with rock blocks, and high frequency of recruitment by vegetative reproduction.
Resumo:
Vegetation on rock outcrops in the "Chapada Diamantina" (soil islands) is often aggregated and surrounded by nude rock surfaces, thus creating natural units with well defined limits. The flowering and fruiting cycles of plants on 58 soil islands at altitudes between 1,100 and 1,140 meters above sea leavel were analyzed at Mãe Inácia Peak (12°27' S and 41°28' W) in the "Chapada Diamantina", Bahia, Brazil. The presence/absence of flowering and fruiting species on each soil island, and their respective cover areas were analyzed at both the population and community levels, and the phenophases of flowering and fruiting were observed during 24 successive months. The analyses of pollination and seed dispersal syndromes indicated that animals are more important in pollination than in seed dispersal (which is predominantly by anemochory and autochory). The flowering and fruiting of plants with animal pollination syndromes were correlated with rainfall and temperature. The flowering season varied during the year according to the pollination syndrome involved: entomophily was predominant from summer through autumn, ornithophily was predominant during winter, and anemophily in the spring. The staggered timing of flowering and fruiting among different species provides a nearly continuous supply of resources for the local fauna.
Resumo:
Soil islands on rocky surfaces often harbor aggregated vegetation that consists of insular plant communities. These islands are typical of the rocky outcrops and in various parts of Brazil form the so-called "campos rupestres" vegetation. Four of such sites have been selected in the state of Bahia, Northeast Brazil, for this comparative study on floristics and vegetation structure: three areas situated inside the "Parque Nacional da Chapada Diamantina" (Guiné, Fumaça and "Gerais da Fumaça") and one is at the border of the Environmental Protection Area of "Marimbus-Iraquara" ("Mãe Inácia"). All occurring vegetation islands were studied in four random plots of 10 × 10 m per site. Soil was often shallow, sandy and acidic. Vascular plant species were determined, with respective life forms and canopy coverage areas. The total number of species when all four sites were added was 135, and the number of species per island varied from 2 to 32. The areas of the 214 soil islands varied from 0.015 to 91.9 m², totaling 568 m² in the four sites. Monocotyledon families were dominant, essentially Velloziaceae, as well as Orchidaceae, Bromeliaceae, Amaryllidaceae and Cyperaceae. Among the eudicotyledons, dominant families were mainly Clusiaceae, Asteraceae and Melastomataceae. The biological spectra revealed that phanerophytes and hemicryptophytes predominated among the life forms, while chamaephytes had the largest coverage area. Epilithic and desiccant chamaephytes composed the most conspicuous interspecific associations, and were probably related to early successional processes. Sites closest to one another were not the most similar in structure, indicating that other factors more relevant than distance might be involved in the abundance of species in space.
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
In the present study, we examined the relationship between cell phenotype and cell survival of three human non-small cell lung carcinoma cell lines (A549, NCI-H596 and NCI-H520). Cells in exponential growth at various densities were incubated for 24 h at 37ºC in a 5% CO2 humidified atmosphere and then exposed to UV radiation for 1 min (256 nm, 40 W, source-to-target distance 100 cm). After two days the surviving cells were quantified by sulforhodamine ß staining and DNA fragmentation assay. The differences in UV sensitivity at 60 x 10³ cells/cm² among the cell lines were not related to the proliferative state of the cells but to the extent of intercellular contact. In contrast to A549 and NCI-H596, irradiated NCI-H520 cells presented lower DNA fragmentation and an aggregated cell culture phenotype even prior to confluence, suggesting that a contact-effect mechanism provides further protection against UV radiation.
Resumo:
Pressure-driven and temperature-driven transitions of two thermoresponsive polymers, poly(N-isopropylacrylamide) (pNIPAM) and poly(N-vinylisobutyramide) (pNVIBA)), in both a soluble linear polymer form and a cross-linked hydro-gel form, were examined by a dynamic light-scattering method and direct microscopic observation, respectively. Their behavior was compared with that of protein systems. Changes in some characteristic parameters in the time-intensity correlation functions of dynamic light-scattering measurement of aqueous solutions of pNIPAM at various pressures and temperatures showed no essential differences during temperature and pressure scanning and, as a whole, the motions of polymers in aqueous solutions were similar in two types of transitions until chain shrinkage occurred. The gels (cross-linked polymer gels) prepared from the thermoresponsive polymers also showed similar volume transitions responding to the pressure and temperature increase. In temperature transitions, however, gels showed drastic volume shrinkage with loss of transparency, while pressure-induced transition showed a slow recovery of transparency while keeping the size, after first transient drastic volume shrinkage with loss of transparency. At a temperature slightly higher than the transition under atmospheric temperature, so-called reentry of the volume change and recovery of the transparency were observed during the pressure-increasing process, which implies much smaller aggregation or non-aggregated collapsed polymer chains in the gel at higher pressures, indicating a certain mechanistic difference of the dehydration processes induced by temperature and pressure.