982 resultados para agar gel electrophoresis
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
Many protozoan parasites represent an important group of human pathogens. Pulsed Field Gradient Gel Electrophoresis (PFGE) analysis has been an important tool for fundamental genetic studies of parasites like Trypanosoma, Leishmania, Giardia or the human malaria parasite Plasmodium falciparum. We present PFGE conditions allowing a high resolution separation of chromosomes ranging from 500 to 4000 kb within a two day electrophoresis run. In addition, we present conditions for separating large chromosomes (2000-6000 kb) within 36 hr. We demontrate that the application of two dimentional PFGE (2D-PFGE) technique to parasite karyotypes is a very useful method for the analysis of dispersed gene families and comparative studies of the intrachomosomal genome organization
Resumo:
By using improved pulsed field gel electrophoresis conditions, the molecular karyotype of the reference clone CL Brener selected for Trypanosoma cruzi genome project was established. A total of 20 uniform chromosomal bands ranging in size from 0.45 to 3.5 Megabase pairs (Mbp) were resolved in a single run. The weighted sum of the chromosomal bands was approximately 87 Mbp. Chromoblots were hybridized with 39 different homologous probes, 13 of which identified single chromosomes. Several markers showed linkage and four different linkage groups were identified, each comprising two markers. Densitometric analysis suggests that most of the chromosomal bands contain two or more chromosomes representing either homologous chromosomes and/or heterologous chromosomes with similar sizes
Resumo:
Strategies to construct the physical map of the Trypanosoma cruzi nuclear genome have to capitalize on three main advantages of the parasite genome, namely (a) its small size, (b) the fact that all chromosomes can be defined, and many of them can be isolated by pulse field gel electrophoresis, and (c) the fact that simple Southern blots of electrophoretic karyotypes can be used to map sequence tagged sites and expressed sequence tags to chromosomal bands. A major drawback to cope with is the complexity of T. cruzi genetics, that hinders the construction of a comprehensive genetic map. As a first step towards physical mapping, we report the construction and partial characterization of a T. cruzi CL-Brener genomic library in yeast artificial chromosomes (YACs) that consists of 2,770 individual YACs with a mean insert size of 365 kb encompassing around 10 genomic equivalents. Two libraries in bacterial artificial chromosomes (BACs) have been constructed, BACI and BACII. Both libraries represent about three genome equivalents. A third BAC library (BAC III) is being constructed. YACs and BACs are invaluable tools for physical mapping. More generally, they have to be considered as a common resource for research in Chagas disease
Resumo:
The enzyme triosephosphate isomerase (TPI, EC 5.3.1.1) was purified from extracts of epimastigote forms of Trypanosoma cruzi. The purification steps included: hydrophobic interaction chromatography on phenyl-Sepharose, CM-Sepharose, and high performance liquid gel filtration chromatography. The CM-Sepharose material contained two bands (27 and 25 kDa) with similar isoelectric points (pI 9.3-9.5) which could be separated by gel filtration in high performance liquid chromatography. Polyclonal antibodies raised against the porcine TPI detected one single polypeptide on western blot with a molecular weight (27 kDa) identical to that purified from T. cruzi. These antibodies also recognized only one band of identical molecular weight in western blots of several other trypanosomatids (Blastocrithidia culicis, Crithidia desouzai, Phytomonas serpens, Herpertomonas samuelpessoai). The presence of only one enzymatic form of TPI in T. cruzi epimastigotes was confirmed by agarose gel activity assay and its localization was established by immunocytochemical analysis. The T. cruzi purified TPI (as well as other trypanosomatid' TPIs) is a dimeric protein, composed of two identical subunits with an approximate mw of 27,000 and it is resolved on two dimensional gel electrophoresis with a pI of 9.3. Sequence analysis of the N-terminal portion of the 27 kDa protein revealed a high homology to Leishmania mexicana and T. brucei proteins
Resumo:
The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.
Resumo:
Analysis of zymograms with SDS-polyacrilamide gel electrophoresis containing gelatin as substrate, and performed on samples of haemolymph or fat body taken from Rhodnius prolixus inoculated or not with Enterobacter cloacae, demonstrated distinct patterns of protease activities: (i) in the haemolymph two proteases were induced in insects inoculated with bacteria; (ii) two proteases were detected in the fat bodies derived from non-inoculated controls or insect inoculated with sterile culture medium; (iii) haemolymph and fat body had both the same apparent molecular weights proteases (46 and 56 kDa); and (iv) these enzymes were characterized as metallo-proteases. The association of these enzymes in Rhodnius infected with bacteria was discussed.
Resumo:
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Resumo:
Protease activities in the haemolymph and fat body in a bloodsucking insect, Rhodnius prolixus, infected with Trypanosoma rangeli, were investigated. After SDS-polyacrylamide gel electrophoresis containing gelatin as substrate, analysis of zymograms performed on samples of different tissues of controls and insects inoculated or orally infected with short or long epimastigotes of T. rangeli, demonstrated distinct patterns of protease activities: (i) proteases were detected in the haemolymph of insects which were fed on, or inoculated with, short epimastigotes of T. rangeli (39 kDa and 33 kDa, respectively), but they were not observed in the fat body taken from these insects; (ii) protease was also presented in the fat bodies derived from naive insects or controls inoculated with sterile phosphate-saline buffer (49 kDa), but it was not detected in the haemolymph of these insects; (iii) no protease activity was observed in both haemolymph and fat bodies taken from insects inoculated with, or fed on, long epimastigotes of T. rangeli. Furthermore, in short epimastigotes of T. rangeli extracts, three bands of the protease activities with apparent molecular weights of 297, 198 and 95 kDa were detected while long epimastigotes preparation presented only two bands of protease activities with molecular weights of 297 and 198 kDa. The proteases from the insect infected with T. rangeli and controls belong to the class of either metalloproteases or metal-activated enzymes since they are inhibited by 1,10-phenanthroline. The significance of these proteases in the insects infected with short epimastigotes of T. rangeli is discussed in relation to the success of the establishment of infection of these parasites in its vector, R. prolixus.
Resumo:
Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehyde-fixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.
Resumo:
Methicillin resistant Staphylococcus aureus (MRSA) is an organism that is frequently transmitted in hospitals and perinatal units. The MRSA is considered a public health problem in neonatology because of its strong potential for dissemination in the wards associated with high rates of morbidity and mortality. In this study we describe the bacteriological, epidemiological and molecular characteristics of MRSA isolated from anterior nares and blood cultures of newborns hospitalized in a public maternity hospital in the city of Rio de Janeiro, Brazil. The frequency of MRSA isolated from nasal swabs of newborns was 47.8% (43/90). The genetic analysis of MRSA strains from anterior nares, showed 8 different pulsed field gel electrophoresis patterns (PFGE). Upon analysis of PFGE patterns of the 12 MRSA strains isolated from blood cultures, 8 different patterns were observed, 9 (75%) strains were genetic related to nasal secretion isolates patterns. In conclusion, our data demonstrate the importance of screening of newborns for the presence of MRSA in Brazilian hospitals and the usefulness of genetic typing of these pathogen during epidemiologic studies. This should lead to a better knowledge on the significancy and spreading of MRSA in the hospitals.
Resumo:
Electrophoretic studies of multilocus-enzymes (MLEE) and whole-cell protein (SDS-PAGE) were carried out in order to evaluate the parity between different methods for the characterization of five Candida species commonly isolated from oral cavity of humans by numerical taxonomy methods. The obtained data revealed that sodium dodecyl sulfate polyacrylamide gel electrophoresis is more efficient in grouping strains in their respective species while MLEE has much limited resolution in organizing all strains in their respective species-specific clusters. MLEE technique must be regarded for surveys in which just one species of Candida is involved.
Resumo:
The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70) and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.
Resumo:
Polyacrylamide gel electrophoresis was used to elucidate genetic variation at 13 isozyme loci among forest populations of Lutzomyia shannoni from three widely separated locations in Colombia: Palambí (Nariño Department), Cimitarra (Santander Department) and Chinácota (Norte de Santander Department). These samples were compared with a laboratory colony originating from the Magdalena Valley in Central Colombia. The mean heterozygosity ranged from 16 to 22%, with 2.1 to 2.6 alleles detected per locus. Nei's genetic distances among populations were low, ranging from 0.011 to 0.049. The estimated number of migrants (Nm=3.8) based on Wright's F-Statistic, F ST, indicated low levels of gene flow among Lu. shannoni forest populations. This low level of migration indicates that the spread of stomatitis virus occurs via infected host, not by infected insect. In the colony sample of 79 individuals, the Gpi locus was homozygotic (0.62/0.62) in all females and heterozygotic (0.62/0.72) in all males. Although this phenomenon is probably a consequence of colonization, it indicates that Gpi is linked to a sex determining locus.
Resumo:
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], Jørgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.