998 resultados para active warming
Resumo:
We report enhanced emission and gain narrowing in Rhodamine 590 perchlorate dye in an aqueous suspension of polystyrene microspheres. A systematic experimental study of the threshold condition for and the gain narrowing of the stimulated emission over a wide range of dye concentrations and scatterer number densities showed several interesting features, even though the transport mean free path far exceeded the system size. The conventional diffusive-reactive approximation to radiative transfer in an inhomogeneously illuminated random amplifying medium, which is valid for a transport mean-free path much smaller than the system size, is clearly inapplicable here. We propose a new probabilistic approach for the present case of dense, random, weak scatterers involving the otherwise rare and ignorable sub-mean-free-path scatterings, now made effective by the high gain in the medium, which is consistent: with experimentally observed features. (C) 1997 Optical Society of America.
Resumo:
This paper deals with the system oriented analysis, design, modeling, and implementation of active clamp HF link three phase converter. The main advantage of the topology is reduced size, weight, and cost of the isolation transformer. However, violation of basic power conversion rules due to presence of the leakage inductance in the HF transformer causes over voltage stresses across the cycloconverter devices. It makes use of the snubber circuit necessary in such topologies. The conventional RCD snubbers are dissipative in nature and hence inefficient. The efficiency of the system is greatly improved by using regenerative snubber or active clamp circuit. It consists of an active switching device with an anti-parallel diode and one capacitor to absorb the energy stored in the leakage inductance of the isolation transformer and to regenerate the same without affecting circuit performance. The turn on instant and duration of the active device are selected such that it requires simple commutation requirements. The time domain expressions for circuit dynamics, design criteria of the snubber capacitor with two conflicting constrains (over voltage stress across the devices and the resonating current duration), the simulation results based on generalized circuit model and the experimental results based on laboratory prototype are presented.
Resumo:
Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.
Resumo:
Active Front-End (AFE) converter operation produces electrically noisy DC bus on common mode basis. This results in higher ground current as compared to three phase diode bridge rectifier. Filter topologies for DC bus have to deal problems with switching frequency and harmonic currents. The proposed filter approach reduces common mode voltage and circulates third harmonic current within the system, resulting in minimal ground current injection. The filtering technique, its constrains and design to attenuate common mode voltage and eliminate lower order harmonics injection to ground is discussed. The experimental results for operation of the converter with both SPWM and CSVPWM are presented.
Resumo:
Observations from moored buoys during spring of 1998-2000 suggest that the warming of the mixed layer (similar to20 m deep) of the north Indian Ocean warm pool is a response to net surface heat flux Q(net) (similar to100 W m(-2)) minus penetrative solar radiation Q(pen) (similar to45 W m(-2)). A residual cooling due to vertical mixing and advection is indirectly estimated to be about 25 W m(-2). The rate of warming due to typical values of Q(net) minus Q(pen) is not very sensitive to the depth of the mixed layer if it lies between 10 m and 30 m.
Resumo:
In the mean, bipolar active regions are oriented nearly toroidally, according to Hale's polarity law, with a latitude-dependent tilt known as Joy's Law. The tilt angles of individual active regions deviate from this mean behavior and change over time. It has been found that on average the change is toward the mean angle at a rate characteristic of 4.37 days (Howard, 1996). We show that this orientational relaxation is consistent with the standard model of flux tube emergence from a deep dynamo layer. Under this scenario Joy's law results from the Coriolis effect on the rising flux tube (D'Silva and Choudhuri, 1993), and departures from it result from turbulent buffeting of the tubes (Longcope and Fisher, 1996). We show that relaxation toward Joy's angle occurs because the turbulent perturbations relax on shorter time scales than the perturbations from the Coriolis force. The turbulent perturbations relax more rapidly because they are localized to the topmost portion of the convection zone while the Coriolis perturbations are more widely distributed. If a fully-developed active region remains connected to the strong toroidal magnetic field at the base of the convection zone, its tilt will eventually disappear, leaving it aligned perfectly toroidally. On the other hand, if the flux becomes disconnected from the toroidal field the bipole will assume a tilt indicative of the location of disconnection. We compare models which are connected and disconnected from the toroidal field. Only those disconnected at points very deep in the convection zone a-re consistent with observed time scale of orientational relaxation.
Resumo:
1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.
Resumo:
We review recent work on the physical properties of model fluid membranes in nonequilibrium situations resembling those encountered in the living cell and contrast their properties with those of the more familiar membranes at thermal equilibrium. We survey models for the effect of (i) active pumps and (ii) active fission–fusion processes encountered in intracellular trafficking on the stability and fluctuations of fluid membranes. Our purpose is twofold: to highlight the exciting nonequilibrium phenomena that arise in biological systems, and to show how some crucial features of living systems, namely dissipative energy uptake and directed motion, can fruitfully be incorporated into physical models of biological interest.
Resumo:
Owing to the lack of atmospheric vertical profile data with sufficient accuracy and vertical resolution, the response of the deep atmosphere to passage of monsoon systems over the Bay of Bengal. had not been satisfactorily elucidated. Under the Indian Climate Research Programme, a special observational programme called 'Bay of Bengal Monsoon Experiment' (BOBMEX), was conducted during July-August 1999. The present study is based on the high-resolution radiosondes launched during BOBMEX in the north Bay. Clear changes in the vertical thermal structure of the atmosphere between active and weak phases of convection have been observed. The atmosphere cooled below 6 km height and became warmer between 6 and 13 km height. The warmest layer was located between 8 and 10 km height, and the coldest layer was found just below 5 km height. The largest fluctuations in the humidity field occurred in the mid-troposphere. The observed changes between active and weak phases of convection are compared with the results from an atmospheric general circulation model, which is similar to that used at the National Centre for Medium Range Weather Forecasting, New Delhi. The model is not able to capture realistically some important features of the temperature and humidity profiles in the lower troposphere and in the boundary layer during the active and weak spells.
Resumo:
We have imaged the H92alpha and H75alpha radio recombination line (RRL) emissions from the starburst galaxy NGC 253 with a resolution of similar to4 pc. The peak of the RRL emission at both frequencies coincides with the unresolved radio nucleus. Both lines observed toward the nucleus are extremely wide, with FWHMs of similar to200 km s(-1). Modeling the RRL and radio continuum data for the radio nucleus shows that the lines arise in gas whose density is similar to10(4) cm(-3) and mass is a few thousand M., which requires an ionizing flux of (6-20) x 10(51) photons s(-1). We consider a supernova remnant (SNR) expanding in a dense medium, a star cluster, and also an active galactic nucleus (AGN) as potential ionizing sources. Based on dynamical arguments, we rule out an SNR as a viable ionizing source. A star cluster model is considered, and the dynamics of the ionized gas in a stellar-wind driven structure are investigated. Such a model is only consistent with the properties of the ionized gas for a cluster younger than similar to10(5) yr. The existence of such a young cluster at the nucleus seems improbable. The third model assumes the ionizing source to be an AGN at the nucleus. In this model, it is shown that the observed X-ray flux is too weak to account for the required ionizing photon flux. However, the ionization requirement can be explained if the accretion disk is assumed to have a big blue bump in its spectrum. Hence, we favor an AGN at the nucleus as the source responsible for ionizing the observed RRLs. A hybrid model consisting of an inner advection-dominated accretion flow disk and an outer thin disk is suggested, which could explain the radio, UV, and X-ray luminosities of the nucleus.
Resumo:
Fluorescence quenching of biologically active carboxamide namely (E)-2-(4-chlorobenzylideneamino)-N-(2-chlorophenyl)-4,5,6,7-tetrahydrobe nzo[b]thiophene-3-carboxamide [ECNCTTC] by aniline and carbon tetrachloride (CCl(4)) quenchers in different solvents using steady state method and time resolved method using only one solvent has been carried out at room temperature to understand the role of quenching mechanisms. The Stern-Volmer plot has been found to be linear for all the solvents studied. The probability of quenching per encounter p (p') was determined in all the solvents and was found to be less than unity. Further, from the studies of rate parameters and life time measurements in n-heptane and cyclohexane with aniline and carbon tetrachloride as quenchers have been shown that, the phenomenon of quenching is generally governed by the well-known Stern-Volmer (S-V) plot. The activation energy E(a) (or E(a)') of quenching was determined using the literature values of activation energy of diffusion E(d) and the experimentally determined values of p (or p'). It has been found that, the activation energy E(a) (E(a)') is greater than the activation energy for diffusion E(d) in all solvents. Hence, from the magnitudes of E(a) (or E(a)') as well as p (or p') infer that, the quenching mechanism is not solely due to the material diffusion, but there is also contribution from the activation energy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO(2) changes for the same change in global mean surface temperature. Thus, solar radiation management ``geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO(2), the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.