958 resultados para YB-YAG
Resumo:
Advanced waveguide lasers, operating both in continuous wave and pulsed regimes, have been realized in an active phosphate glass by direct writing with femtosecond laser pulses. Stable single mode operation was obtained; the laser provided more than 50 m W in single longitudinal and transverse mode operation with 21% slope efficiency. Furthermore, by combining a high gain waveguide and an innovated fiber-pigtailed saturable absorber based on carbon nanotubes, a mode-locked ring laser providing transform limited 1.6 ps pulses was demonstrated. © 2007 IEEE.
Resumo:
During laser welding, the keyhole is generated by the recoil pressure induced by the evaporation processes occurring mainly on the front keyhole wall (KW). In order to characterize the evaporation process, we have measured this recoil pressure by using a plume deflection technique, where the plume generated for static conditions (i. e. with no sample displacement) is deflected by a transverse side gas jet. From the measurement of the plume deflection angle, the recoil pressure can be determined as a function of incident intensity and sample material. From these data one can estimate the pressure generated on the front KW, during laser welding. Therefore, the corresponding dynamic pressure exerted by the vapor plume expansion on the rear KW, in contact with the melt pool, can be also estimated. These pressures appear to be in close agreement with those generated by an additional side jet that has been used in previous experiments, for stabilizing the observed melt pool oscillations or fluctuations.
Resumo:
During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
A study on the nanosecond fiber laser interaction with silicon was performed experimentally for the generation of percussion drilled holes. Single pulse ablation experiments were carried out on mono crystalline 650μm thick Si wafers. Changes of the mass removal mechanism were investigated by varying laser fluence up to 68 J/cm2 and pulse duration from 50 ns to 200 ns. Hole width and depth were measured and surface morphology were studied using scanning electron microscopy (SEM) and optical interferometric profilometry (Veeco NT3300). High speed photography was also used to examine laser generated plasma expansion rates. The material removal rate was found to be influenced by the pulse energy, full pulse duration and pulse peak power. Single pulse ablation depth of 4.42 μm was achieved using a 200 ns pulse of 13.3 J/cm 2, giving a maximum machining efficiency of 31.86 μm per mJ. Holes drilled with an increased fluence but fixed pulse length were deeper, exhibited low recast, but were less efficient than those produced at a lower fluence. The increased peak power in this case led to high levels of plasma and vapour production. The expansion of which, results in a strong driving recoil force, an increase in the rate and volume of melt ejection, and cleaner hole formation. The experimental findings show that for efficient drilling at a given energy, a longer, lower peak power pulse is more desirable than a high peak power short pulse.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.
Resumo:
一种掺Yb双包层光纤激光器v形槽侧面粘和泵浦方法,其特征在于,包括如下步骤:步骤1:在双包层光纤的内包层和外包层上用精密光学微加工技术沿双包层光纤的轴向加工一段v形槽,该v形槽的底部高于双包层光纤的纤芯的表面;步骤2:将多模尾纤的一端用化学腐蚀方法去掉涂敷层,得到裸尾纤;步骤3:将多模尾纤一端的裸尾纤放入双包层光纤的v形槽内,该裸尾纤与纤芯相隔一距离;步骤4:使用光学折射率匹配胶填充于v形槽内,使裸尾纤与纤芯平行固定于v形槽内。
Resumo:
A fundamental mode Nd YAG laser is experimentally demonstrated with a stagger pumped laser module and a special resonator. The rod is pumped symmetrically by staggered bar modules. A dynamic fundamental mode is achieved with the special resonator under different pump levels. A maximal continuous wave output of 61 W (M-2 = 1.4) is achieved with a single rod. An average output of 47 W, pulse width of 54 ns, pulse energy of 4.7 mJ and peak power of 87 kW are obtained under the Q-switched operation of 10 kHz.
Resumo:
We report the technique of the ion-implanted semi-insulating GaAs wafer used for passive Q-switched mode locking in double-cladding Yb:fiber laser. The wafer was implanted with 400-keV energy, 10(16)/cm(2) dose As+ ions, and was annealed at 600degreesC for 20 min. At the pump power of 5W, we achieved output power of 200mW. The repetition rate of envelope of Q-switched mode locking is 50-kHz with a FWHM envelope of 4mus. The repetition rate of mode locked pulse train was found to be 15-MHz. This is the first report of such a kind of laser to the best of our knowledge.
Resumo:
Diode-pumped passively mode-locked laser operation of Yb3+,Na+:CaF2 single crystal has been demonstrated for the first time. By using a SESAM ( semiconductor saturable mirror), simultaneous transform-limited 1-ps passively mode-locked pulses, with the repetition rate of 183MHz, were obtained under the self-Q-switched envelope induced by the laser medium. The average output power of 360mW was attained at 1047nm for 3.34W of absorbed power at 976nm, and the corresponding pulse peak power arrived at 27kW, indicating the promising application of Yb3+,Na+-codoped CaF2 crystals in achieving ultra-short pulses and high pulse peak power. (c) 2005 Optical Society of America.
Resumo:
We report on a diode- pumped CW passively mode locked ceramic Nd: YAG laser with SESAM ( semiconductor saturable absorber mirror), wavelength 1064nm. At a pump power of 7.6w, the pulse width was estimated to be similar to 8.3ps with repetition rate similar to 130MHz and the average output power was 1.59w. To our knowledge, this was the first demonstration that ceramic Nd: YAG was used for diode pumped CW passively mode locking. (C) 2005 Optical Society of America.
Resumo:
Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the F-2(5/2) and F-2(7/2) levels of Yb3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb3+ in SiO2. Photoluminescence exitation sprectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminscence of rare-earth ions in SiO2 is very effective.