969 resultados para Wood chemical properties
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
Achieving the combination of delayed and immediate release of a vaccine from a delivery device without applying external triggers remains elusive in implementing single administration vaccination strategies. Here a means of vaccine delivery is presented, which exploits osmosis to trigger delayed burst release of an active compound. Poly(-caprolactone) capsules of 2 mm diameter were prepared by dip-coating, and their burst pressure and release characteristics were evaluated. Burst pressures (in bar) increased with wall thickness (t in mm) following Pburst = 131.t + 3.4 (R2 = 0.93). Upon immersion in PBS, glucose solution-filled capsules burst after 8.7 ± 2.9 days. Copolymers of hydrophobic -caprolactone and hydrophilic polyethylene glycol were synthesized and their physico-chemical properties were assessed. With increasing hydrophilic content, the copolymer capsules showed increased water uptake rates and maximum weight increase, while the burst release was earlier: 5.6 ± 2.0 days and 1.9 ± 0.2 days for 5 and 10 wt% polyethylene glycol, respectively. The presented approach enables the reproducible preparation of capsules with high versatility in materials and properties, while these vaccine delivery vehicles can be prepared separately from, and independently of the active compound.
Resumo:
This project aim was to replace petroleum-based plastic packaging materials that pollute the environment, with biodegradable starch-based polymer composites. It was demonstrated that untreated sugar cane bagasse microfibres and unbleached nanofibres significantly improved the physical, mechanical and chemical properties of starch films, while thermal extrusion of starch with alcohol improved the stiffness and the addition of aconitic acid cross-linked the film making it moisture resistant and extensible.
Resumo:
Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH3SO3] was ∼42%, and ∼35%–36% by EG with HCl or H2SO4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.
Resumo:
The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.
Resumo:
Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha-1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination. The study on a commercial cashew plantation at Dimbulah, Australia, investigated the effect of N rate and timing on cashew growth, nut production, N leaching and soil chemical properties over five growth cycles (1995-1999). Nitrogen was applied during the main periods of vegetative (December-April) and reproductive (June-October) growth. Commercial NIS yields (up to 4.4 t ha-1 from individual trees) that exceeded the economic threshold of 2.8 t ha-1 were achieved. The yield response was mainly determined by canopy size as mean nut weight, panicle density and nuts per panicle were largely unaffected by N treatments. Nitrogen application confined to the main period of vegetative growth (December-April) produced a seasonal growth pattern that corresponded most consistently with highest NIS yield. This N timing also reduced late season flowering and undesirable post-November nut drop. Higher yields were not produced at N rates greater than 17 g m-2 of canopy surface area (equating to 210 kg N ha-1 for mature size trees). High yields were attained when N concentrations in Mveg leaves in May-June were about 2%, but this assessment occurs at a time when it is not feasible to correct N deficiency. The Mflor leaf of the preceding November, used in conjunction with the Mveg leaf, was proposed as a diagnostic tool to guide N rate decisions. Leaching of nitrate-N and acidification of the soil profile was recorded to 0.9 m. This is an environmental and sustainability hazard, and demonstrates that improved methods of N management are required.
Resumo:
The aim of this project was to quantify differences between treated and untreated coir (coconut industrial residues) products and to identify differences in growth, yield and quality of cut flowers grown in different coir products. This has been brought about largely by the concern that some coir products, washed in low quality (saline) water may have detrimental effects on plant productivity and quality. There is concern in the flower production industry and among media suppliers, that lower quality products are favoured due to price alone, which as this project shows is a false economy. Specifically the project examined: • Differences in physical and chemical properties of treated and untreated coir along with another commonly used growing media in the flower industy; • Potential improvements in yield and quality of Gerbera (Gerbera jamesonii); • Potential differences in vase life of Gerbera as a result of the different growing media; and • Cost-benefit implications of treated (more expensive) coir substrate products versus untreated (less expensive) coir including any subsequent differences in yield and quality. By first examining the physical and some chemical properties of different coir substrates and other industry standard media, the researchers have been able to validate the concerns raised about the potential quality issues in coir based growing media. There was a great deal of variation in both the electrical conductivity and sodium contents. Physical properties were also variable as expected since manufacturers are able to target the specific physical preferences of plants through manipulation of the particle size distribution. A field trial was conducted under protected cropping practices in which three growing media were compared in terms of total productivity and also flower quality parameters such as stem length, flower diameter and vase life. The trial was a completely randomised design with the three growing media comprising treated coir discs, untreated coir discs and a pine bark coir mix. Four cultivars of Gerbera were assessed: Balance®; Carambole®; Dune® and Picobello®, all new products from Florist de Kwakel B.V., Denmark. Initial expansion from tissue culture was conducted at the Highsun Express Facility, Ormiston, Queensland. The trial included 12 replications of each cultivar in each media (a total of 144 plants) to ensure all data collected, and the derived conclusions were statistically rigorous. The coir supplied with no pre-treatment or buffering produced significantly less flowers than those grown in a pine bark coir mix or the pre-treated coir. Interestingly, the pine bark coir mix produced a greater number of flowers. However, the flowers produced in the pine bark coir mix were generally a shorter length stem. Productivity data, combined with flower quality data and component costs were all analysed through a cost/benefit economic model which showed that the greater revenue from better stem length outweighed the stem numbers, giving a cost benefit ratio of 2.58 for treated coir, 2.49 for untreated coir and 2.52 for pine bark coir mix. While this does not seem a large difference, when considering the number of plants a producer maintains can be upwards of 50,000 the difference in revenue would be, at a minimum $60,000 in this example. In conclusion, this project has found that there are significant effects on plant health, growth, yield and quality between those grown in treated and untreated coir. The outcome being growers can confidently invest in more expensive treated products with the assurance that benefits will outweigh initial cost. It is false economy to favour untreated coir products based on price alone. Producers should ensure they fully understand the production processes when purchasing growing media. Rather than targeting lower priced materials, it is recommended that quality be the highest priority in making this management decision. In making recommendations for future research and development it was important to consider conclusions from other researchers as well as those of the current project. It has been suggested that the media has greater longevity, which although not captured in this study could also lead to further cost efficiencies. Assessment of the products over a longer time period, and using a wider range of plant species are the major recommendations for further research to ensure greater understanding as to the importance in choosing the right growing media to meet specific needs.
Resumo:
The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased.
Resumo:
Physical and chemical properties of biofuels vary among various feedstocks and their subsequent conversions to fuels. The biofuels contain various amounts of oxygen, and this has a significant influence on exhaust emission. This oxygen content has been considered in order to investigate its effect on diesel engine exhaust emissions. The experiments have been conducted with a heavy duty diesel engine and various oxygenated fuels. It is found that the amount of oxygen in the fuel has a high level of influence on its exhaust emissions, and this provides agreement with diesel emissions results such as PN reduction. By increasing the amount of oxygen in the blend (by adding more biofuel), the particulate number (PN) is reduced and NOx increases gradually. However, the variation of PN and NOx are not similar for waste cooking biodiesel (WCBD) and butanol blend, even though their oxygen content are the same in the blends. This is due to the source of the biofuel and their internal chemistry.
Resumo:
The chemical and physical properties of bimetallic clusters have attracted considerable attention due to the potential technological applications of mixed-metal systems. It is of fundamental interests to study clusters because they are the link between atomic surface and bulk properties. More information of metal-metal bond in small clusters can be hence released. The studies in my thesis mainly focus on the two different kinds of bimetallic clusters: the clusters consisting of extraordinary shaped all metal four-membered rings and a series of sodium auride clusters. As described in most general organic chemistry books nowadays, a group of compounds are classified as aromatic compounds because of their remarkable stabilities, particular geometrical and energetic properties and so on. The notation of aromaticity is essentially qualitative. More recently, the connection has been made between aromaticity and energetic and magnetic properties. Also, the discussions of the aromatic nature of molecular rings are no longer limited to organic compounds obeying the Hückel’s rule. In our research, we mainly applied the GIMIC method to several bimetallic clusters at the CCSD level, and compared the results with those obtained by using chemical shift based methods. The magnetically induced ring currents can be generated easily by employing GIMIC method, and the nature of aromaticity for each system can be therefore clarified. We performed intensive quantum chemical calculations to explore the characters of the anionic sodium auride clusters and the corresponding neutral clusters since it has been fascinating in investigating molecules with gold atom involved due to its distinctive physical and chemical properties. As small gold clusters, the sodium auride clusters seem to form planar structures. With the addition of a negative charge, the gold atom in anionic clusters prefers to carry the charge and orients itself away from other gold atoms. As a result, the energetically lowest isomer for an anionic cluster is distinguished from the one for the corresponding neutral cluster. Mostly importantly, we presented a comprehensive strategy of ab initio applications to computationally implement the experimental photoelectron spectra.
Resumo:
Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
This study examined the physical and chemical properties of a novel, fully-recirculated prawn and polychaete production system that incorporated polychaete-assisted sand filters (PASF). The aims were to assess and demonstrate the potential of this system for industrialisation, and to provide optimisations for wastewater treatment by PASF. Two successive seasons were studied at commercially-relevant scales in a prototype system constructed at the Bribie Island Research Centre in Southeast Queensland. The project produced over 5.4 tonnes of high quality black tiger prawns at rates up to 9.9 tonnes per hectare, with feed conversion of up to 1.1. Additionally, the project produced about 930 kg of high value polychaete biomass at rates up to 1.5 kg per square metre of PASF, with the worms feeding predominantly on waste nutrients. Importantly, this closed production system demonstrated rapid growth of healthy prawns at commercially relevant production levels, using methods that appear feasible for application at large scale. Deeper (23 cm) PASF beds provided similar but more reliable wastewater treatment efficacies compared with shallower (13 cm) beds, but did not demonstrate significantly greater polychaete productivity than (easier to harvest) shallow beds. The nutrient dynamics associated with seasonal and tidal operations of the system were studied in detail, providing technical and practical insights into how PASF could be optimised for the mitigation of nutrient discharge. The study also highlighted some of the other important advantages of this integrated system, including low sludge production, no water discharge during the culture phase, high ecosystem health, good prospects for biosecurity controls, and the sustainable production of a fishery-limited resource (polychaetes) that may be essential for the expansion of prawn farming industries throughout the world. Regarding nutrient discharge from this prototype mariculture system, when PASF was operating correctly it proved feasible to have no water (or nutrient) discharge during the entire prawn growing season. However, the final drain harvest and emptying of ponds that is necessary at the end of the prawn farming season released 58.4 kg ha-1 of nitrogen and 6 kg ha-1 of phosphorus (in Season 2). Whilst this is well below (i.e., one-third to one-half of) the current load-based licencing conditions for many prawn farms in Australia, the levels of nitrogen and chlorophyll a in the ponds remained higher than the more-stringent maximum limits at the Bribie Island study site. Zero-net-nutrient discharge was not achieved, but waste nutrients were low where 5.91 kg of nitrogen and 0.61 kg of phosphorus was discharged per tonne of prawns produced. This was from a system that deployed PASF at 14.4% of total ponded farm area which treated an average of 5.8% of pond water daily and did not use settlement ponds or other natural or artificial water remediation systems. Four supplemental appendices complement this research by studying several additional aspects that are central to the industrialisation of PASF. The first details an economic model and decision tool which allows potential users to interactively assess construction and operational variables of PASF at different scales. The second provides the qualitative results of a prawn maturation trial conducted collaboratively with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to assess dietary inclusions of PASF-produced worms. The third provides the reproductive results from industry-based assessments of prawn broodstock produced using PASF. And the fourth appendix provides detailed elemental and nutritional analyses of bacterial biofilm produced by PASF and assesses its potential to improve the growth of prawns in recirculated culture systems.