971 resultados para WNT pathway genes
Resumo:
Chromosome microdeletions or duplications are detected in 10-20% of patients with mental impairment and normal karyotypes. A few cases have been reported of mental impairment with microdeletions comprising tumor suppressor genes. By array-CGH we detected 4 mentally impaired individuals carrying de novo microdeletions sharing an overlapping segment of similar to 180 kb in 17p13.1. This segment encompasses 18 genes, including 3 involved in cancer, namely KCTD11/REN, DLG4/PSD95, and GPS2. Furthermore, in 2 of the patients, the deletions also included TP53, the most frequently inactivated gene in human cancers. The 3 tumor suppressor genes KCTD11, DLG4, and GPS2, in addition to the GABARAP gene, have a known or suspected function in neuronal development and are candidates for causing mental impairment in our patients. Among our 4 patients with deletions in 17p13.1, 3 were part of a Brazilian cohort of 300 mentally retarded individuals, suggesting that this segment may be particularly prone to rearrangements and appears to be an important cause (similar to 1%) of mental retardation. Further, the constitutive deletion of tumor suppressor genes in these patients, particularly TP53, probably confers a significantly increased lifetime risk for cancer and warrants careful oncological surveillance of these patients. Constitutional chromosome deletions containing tumor suppressor genes in patients with mental impairment or congenital abnormalities may represent an important mechanism linking abnormal phenotypes with increased risks of cancer. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1 beta/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1 beta and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.
Resumo:
Background/Aims: Prolonged physical exercise induces adaptive alterations in the hypothalamic-pituitary axis, increasing cortisol metabolism, and reducing cortisol synthesis and glucocorticoid sensitivity. The mechanisms responsible for this relative glucocorticoid resistance remain unknown but may involve expression of genes encoding glucocorticoid receptor (GR) and/or inflammatory molecules of nuclear factor kappa B1 (NFkB1) signaling pathway and cytokines. This study aimed to determine the impact of prolonged physical training on the expression of genes involved in glucocorticoid action and inflammatory response. Methods: Normal sedentary male cadets of the Brazilian Air Force Academy were submitted to 6 weeks of standardized physical training. Eighteen of 29 initially selected cadets were able to fully complete the training program. Fasting glucose, insulin and cortisol levels, cytokine concentration and the expression of genes encoding GR, NFkB1, inhibitor of NFkB1 and IkB kinase A were determined before and after the training period. Results: Prolonged physical exercise reduced the basal cortisol levels and the percent cortisol reduction after dexamethasone. These findings were associated with a significant reduction in the mRNA levels of GR (6.3%), NFkB1 (63%), inhibitor of NFkB1 (25%) and IkB kinase A (46%) with concomitant reduction in cytokine concentrations (ELISA). Conclusions: Prolonged physical training decreases the glucocorticoid sensitivity and the mRNA levels of the GR gene combined with decreased mRNA of genes related to the NFkB pathway. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Introduction: Toll-like receptors (TLR) comprehend an emerging family of receptors that recognize pathogen-associated molecular patterns and promote the activation of leukocytes. Surgical trauma and ischemia-reperfusion injury are likely to provide exposure to endogenous ligands for TLR in virtually all kidney transplant recipients. Methods: Macroarray (GEArray OHS-018.2 Series-Superarray) analyses of 128 genes involved in TLR signaling pathway were performed in nephrectomy samples of patients with chronic allograft nephropathy (CAN) and acute rejection (AR, vascular and non vascular). The analysis of each membrane was performed by GEArray Expression Analysis Suite 2.0. Results: Macroarray profile identified a gene expression signature that could discriminate CAN and AR. Three genes were significantly expressed between CAN and vascular AR: Pellino 2; IL 8 and UBE2V1. In relation to vascular and non-vascular AR, there were only two genes with statistical significance: IL-6 and IRAK-3. Conclusion: Vascular and non-vascular AR and CAN showed different expression of a few genes in TLR pathway. The analysis of nephrectomy showed that activation of TLR pathway is present in AR and CAN. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The biosynthesis of quinolinate, the de novo precursor of nicotinamide adenine dinucleotide (NAD), may be performed by two distinct pathways, namely, the bacterial aspartate (aspartate-to-quinolinate) and the eukaryotic kynurenine (tryptophan-to-quinolinate). Even though the separation into eukaryotic and bacterial routes is long established, recent genomic surveys have challenged this view, because certain bacterial species also carry the genes for the kynurenine pathway. In this work, both quinolinate biosynthetic pathways were investigated in the Bacteria clade and with special attention to Xanthomonadales and Bacteroidetes, from an evolutionary viewpoint. Genomic screening has revealed that a small number of bacterial species possess some of the genes for the kynurenine pathway, which is complete in the genus Xanthomonas and in the order Flavobacteriales, where the aspartate pathway is absent. The opposite pattern (presence of the aspartate pathway and absence of the kynurenine pathway) in close relatives (Xylella ssp. and the order Bacteroidales, respectively) points to the idea of a recent acquisition of the kynurenine pathway through lateral gene transfer in these bacterial groups. In fact, sequence similarity comparison and phylogenetic reconstruction both suggest that at least part of the genes of the kynurenine pathway in Xanthomonas and Flavobacteriales is shared by eukaryotes. These results reinforce the idea of the role that lateral gene transfer plays in the configuration of bacterial genomes, thereby providing alternative metabolic pathways, even with the replacement of primary and essential cell functions, as exemplified by NAD biosynthesis.
Resumo:
Background. Malaria is one of the most significant infectious diseases in the world and is responsible for a large proportion of infant deaths. Toll-like receptors (TLRs), key components of innate immunity, are central to countering infection. Variants in the TLR-signaling pathway are associated with susceptibility to infectious diseases. Methods. We genotyped single nucleotide polymorphisms ( SNPs) of the genes associated with the TLR-signaling pathway in patients with mild malaria and individuals with asymptomatic Plasmodium infections by means of polymerase chain reaction. Results. Genotype distributions for the TLR-1 I602S differed significantly between patients with mild malaria and persons with asymptomatic infection. The TLR-1 602S allele was associated with an odds ratio ( OR) of 2.2 ( P = .003; P(corrected) = .015) for malaria among patients with mild malaria due to any Plasmodium species and 2.1 ( P = .015; P(corrected) = .75) among patients with mild malaria due to Plasmodium falciparum only. The TLR-6 S249P SNP showed an excess of homozygotes for the TLR-6 249P allele in asymptomatic persons, compared with patients with mild malaria due to any Plasmodium species (OR 2.1; 95% confidence interval [CI], 1.1-4.2; P = .01; P(corrected) = .05), suggesting that the TLR-6 249S allele may be a risk factor for malaria ( OR, 2.0; 95% CI, 1.1-3.7; P = 0.01; P(corrected) = .05). The TLR-9-1486C allele showed a strong association with high parasitemia ( P < .001). Conclusions. Our findings indicate that the TLR-1 and TLR- 6 variants are significantly associated with mild malaria, whereas the TLR-9-1486C/T variants are associated with high parasitemia. These discoveries may bring additional understanding to the pathogenesis of malaria.
Resumo:
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and recurrent infections. Herein we addressed the role of unfolded protein response (UPR) in the pathogenesis of the disease. Augmented unspliced X-box binding protein 1 (XBP-1) mRNA concurrent with co-localization of IgM and BiP/GRP78 were found in one CVID patient. At confocal microscopy analysis this patient`s cells were enlarged and failed to present the typical surface distribution of IgM, which accumulated within an abnormally expanded endoplasmic reticulum. Sequencing did not reveal any mutation on XBP-1, neither on IRE-1 alpha that could potentially prevent the splicing to occur. Analysis of spliced XBP-1, IRE-1 alpha and BiP messages after LPS or Brefeldin A treatment showed that, unlike healthy controls that respond to these endoplasmic reticulum (ER) stressors by presenting waves of transcription of these three genes, this patient`s cells presented lower rates of transcription, not reaching the same level of response of healthy subjects even after 48 h of ER stress. Treatment with DMSO rescued IgM and IgG secretion as well as the expression of spliced XBP-1. Our findings associate diminished splicing of XBP-1 mRNA with accumulation of IgM within the ER and lower rates of chaperone transcription, therefore providing a mechanism to explain the observed hypogammaglobulinemia. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Canalizing genes possess such broad regulatory power, and their action sweeps across a such a wide swath of processes that the full set of affected genes are not highly correlated under normal conditions. When not active, the controlling gene will not be predictable to any significant degree by its subject genes, either alone or in groups, since their behavior will be highly varied relative to the inactive controlling gene. When the controlling gene is active, its behavior is not well predicted by any one of its targets, but can be very well predicted by groups of genes under its control. To investigate this question, we introduce in this paper the concept of intrinsically multivariate predictive (IMP) genes, and present a mathematical study of IMP in the context of binary genes with respect to the coefficient of determination (CoD), which measures the predictive power of a set of genes with respect to a target gene. A set of predictor genes is said to be IMP for a target gene if all properly contained subsets of the predictor set are bad predictors of the target but the full predictor set predicts the target with great accuracy. We show that logic of prediction, predictive power, covariance between predictors, and the entropy of the joint probability distribution of the predictors jointly affect the appearance of IMP genes. In particular, we show that high-predictive power, small covariance among predictors, a large entropy of the joint probability distribution of predictors, and certain logics, such as XOR in the 2-predictor case, are factors that favor the appearance of IMP. The IMP concept is applied to characterize the behavior of the gene DUSP1, which exhibits control over a central, process-integrating signaling pathway, thereby providing preliminary evidence that IMP can be used as a criterion for discovery of canalizing genes.
Resumo:
The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor N omega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(center dot)NO-cGMP signaling pathway playing a role in zoospore biogenesis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to evaluate the anti-tumor activity of Amblyomin-X, a serine protease Kunitz-type inhibitor. Amblyomin-X induced tumor mass regression and decreased number of metastatic events in a B16F10 murine melanoma model. Alterations on expression of several genes related to cell cycle were observed when two tumor cell lines were treated with Amblyomin-X. PSMB2, which encodes a proteasome subunit, was differentially expressed, in agreement to inhibition of proteasomal activity in both cell lines. In conclusion, our results indicate that Amblyomin-X selectively acts on tumor cells by inducing apoptotic cell death, possibly by targeting the ubiquitin-proteasome system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3
Resumo:
The sequencing of the genome of Chromobacterium violaceum identified one single circular chromosome of 4.8 Mb, in which approximately 40% of the founded ORFs are classified as hypothetical conserved or hypothetical. Some genic regions of biotechnological and biological interest had been characterized, e. g., environmental detoxification and DNA repair genes, respectively. Given this fact, the aim of this work was to identify genes of C. violaceum related to stress response, as the ones involved with mechanisms of DNA repair and/or genomic integrity maintenance. For this, a genomic library of C. violaceum was built in Escherichia coli strain DH10B (RecA-), in which clones were tested to UVC resistance, resulting in five candidates clones. In the PLH6A clone were identified four ORFs (CV_3721 to 3724). Two ORFs, CV_3722 and CV_3724, were subcloned and a synergic complementation activity was observed. The occurrence of an operon was confirmed using cDNA from C. violaceum in a RT-PCR assay. Further, it was observed the induction of the operon after the treatment with UVC. Thus, this operon was related to the stress response in C. violaceum. The mutagenesis assay with rifampicin after the treatment with UVC light showed high frequency of mutagenicity for the ORF CV_3722 (Pol III δ subunit). In this way, we propose that the C. violaceum δ subunit can act in DH10B in the translesion synthesis using Pol IV in a RecA independent-manner pathway. In growth curve assays other four clones (PLE1G, PLE7B, PLE10B and PLE12H) were able to complement the function at the dose 5 J/m2 and in mutagenicity assays PLE7B, PLE10B and PLE12H showed frequencies of mutation with significant differences upon the control (DH10B), demonstrating that in some way they are involved with the stress response in C. violaceum. These clones appear to be interrelated, probably regulated by a messenger molecule (eg., nucleotide c-di-GMP) and/or global regulatory molecule (eg., σS subunit of RNA polymerase).The results obtained contribute for a better genetic knowledge of this specie and its response mechanisms to environmental stress.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and beta-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n - 6) and control pregnancies (n - 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT-PCR (qRT-PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or beta-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total beta-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-beta-catenin protein in SCNT tissues compared with controls. However, qRT-PCR confirmed that the wingless (WNT)/beta-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and beta-catenin proteins, along with defective beta-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.