978 resultados para Varieties Of Groupoids


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Approaching the fiftieth year since its original description, primary aldosteronism is now thought to be the commonest potentially curable and specifically treatable form of hypertension. Correct identification of patients with primary aldosteronism requires that the effects of time of day, posture, dietary sodium intake, potassium levels and medications on levels of aldosterone and renin be carefully considered. Accurate elucidation of the subtype is essential for optimal treatment, and adrenal venous sampling is the only reliable means of differentiating aldosterone-producing adenoma from bilateral adrenal hyperplasia. With genetic testing already available for one inherited form, making more cumbersome biochemical testing for that subtype virtually obsolete and bringing about improvements in treatment approach, an intense search is underway for genetic mutations causing other, more common familial varieties of primary aldosteronism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A presente dissertação investiga o atual estágio de manutenção das variedades dialetais da Itália setentrional no município de Santa Teresa, localizado na região serrana do Espírito Santo. Este trabalho se justifica porque, após 141 anos da chegada dos primeiros italianos a esse município, ainda não existem estudos que abordem questões relacionadas aos dialetos italianos da localidade. Considerando esse cenário, o objetivo deste estudo é oferecer um panorama da situação bilíngue português-dialeto italiano no município, com a identificação das áreas de maior ou menor uso do dialeto e ainda os fatores determinantes para a escolha linguística, os domínios de uso e as atitudes linguísticas dos falantes. Um segundo objetivo do estudo foi documentar algumas tradições orais italianas ainda presentes em Santa Teresa. Os dados foram coletados por meio de observação participante, questionário sociolinguístico e 146 entrevistas semiestruturadas, nas quais os informantes foram divididos por local de residência (zona rural e urbana) e em três faixas etárias (entre 08-30 anos, 31-60 e acima de 60 anos de idade). Os resultados encontrados revelam que o termo taliàn, que significa italiano nos dialetos da Itália setentrional (cf. BOERIO, 1856; RICCI, 1906 etc.), é usado pela maior parte dos falantes da faixa etária acima de 60 anos das zonas rural e urbana. Analisando diacronicamente o processo de uso do dialeto italiano através dos diferentes domínios, no período da infância dos informantes e na atualidade, é possível verificar a perda do dialeto no trajeto de vida dos falantes das faixas etárias de 31-60 anos e dos acima de 60 anos. Entre os informantes da faixa etária de 08-30 anos, verifica-se um quase completo monolinguismo português. Entre os informantes da faixa etária de 31-60 anos, o uso do dialeto italiano é fortemente influenciado pela idade do interlocutor: usam-no mais com seus avós do que com seus pais, e com seus pais mais do que com seus irmãos. Entretanto, nenhum informante desta faixa etária relatou usar o dialeto italiano com os filhos. Em resumo, o uso do dialeto italiano somente entre os membros mais idosos indica o processo de sua substituição pelo português e aponta que sua transmissão às gerações mais jovens está seriamente ameaçada. A análise das atitudes linguísticas dos informantes acima de 60 anos permitiu constatar o desprestígio e o preconceito em relação ao uso do dialeto no período da infância dos informantes. Por outro lado, os relatos em relação ao uso do dialeto na atualidade referem-se à associação da língua e da cultura de origem italiana com elementos positivos; à vontade explícita de manutenção do dialeto pelos adultos e idosos, à recuperação da língua de imigração pelos informantes de 08-30 anos. Aliás, entre os mais jovens, percebe-se uma tentativa de retorno às origens, de valorização da cultura e da língua dos antepassados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fresh-cut vegetables are a successful convenient healthy food. Nowadays, the presence of new varieties of minimally processed vegetables in the market is common in response to the consumers demand for new flavours and high quality products. Within the most recent fresh-cut products are the aromatic herbs. In this work, the objective was to evaluate the nutritional quality and stability of four fresh-cut aromatic herbs. Several physicochemical quality characteristics (colour, pH, total soluble solids, and total titratable acidity) were monitored in fresh-cut chives, coriander, spearmint and parsley leaves, stored under refrigeration (3 ± 1 ºC) during 10 days. Their nutritional composition was determined, including mineral composition (phosphorous, potassium, sodium, calcium, magnesium, iron, zinc, manganese and copper) and fat- and water-soluble vitamin contents. Total soluble phenolics, flavonoids and the antioxidant capacity were determined by spectrophotometric methods. The aromatic herbs kept their fresh appearance during the storage, maintaining their colour throughout shelf-life. Their macronutrient composition and mineral content were stable during storage. Coriander had the highest mineral and fatsoluble vitamin content, while spearmint showed the best scores in the phenolic, flavonoid and antioxidant capacity assays. Vitamins and antioxidant capacity showed some variation during storage, with a differential behaviour of each compound according to the sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tendo em conta um enfoque comunicativo experiencial (Fernández- Corbacho, 2014) e uma pedagogia crítica emancipatória (Jiménez Raya, Lamb & Vieira, 2007), enriquecida por enfoques multissensoriais (Arslan, 2009), é nossa intenção, com este projeto, contribuir para a implementação de práticas que espelhem as variedades linguísticas e culturais da Hispanoamérica (Liceras, 1995; Beave, 2000) na aula de espanhol como língua estrangeira no ensino secundário português. Neste estudo, através duma perspetiva metodológica de índole qualitativa, pretendemos, como ponto de partida, analisar: a) as representações de alunos portugueses sobre o lugar da Hispanoamérica no processo de ensino-aprendizagem de espanhol como língua estrangeira (Altmann & Vences, 2004; Pérez, 2003), através de inquéritos por questionário; e, ainda, b) as abordagens das variedades linguísticas e culturais do espanhol, que surgem nos manuais utilizados no ensino secundário português. Por outro lado, através de um estudo de caso (Benson, Chik, Gao, Huang & Wang, 2009), procurámos evidenciar uma mostra de possíveis boas práticas didático-pedagógicas e materiais, com vista a um trabalho sistemático e próativo com as variedades linguísticas e culturais do espanhol, baseado numa (hiper)pedagogia crítica e encarando a língua enquanto objeto manipulável e potenciador de cidadãos verdadeiramente conscientes do mundo. Para tal, criámos materiais físicos e digitais, que foram posteriormente implementados com alunos do 11º ano de escolaridade, no nível de iniciação de espanhol, num agrupamento de escolas da região de Aveiro. Os resultados mostram que práticas e materiais desta natureza poderão favorecer aprendizagens comunicativas experienciais, quanto à criação de futuros cidadãos críticos e ativos, fomentando o desenvolvimento das suas competências comunicativa plurilingue e pluricultural e duma consciência cultural crítica (Byram, Gribkova & Starkey, 2002) dos alunos, no contexto de ensino-aprendizagem do ensino secundário.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Ciências da Linguagem

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Educação (Especialidade em Literacias e Ensino do Português)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considering the economic importance of the sugar industry among ourselves, the authors carried out a field experiment (Latin square) with Co 290 sugar cane, on a white sandy soil of Piracicaba, State of São Paulo, Brazil, applying NaCl in increasing rates (from 6.8 to 54.5 grams per plant), in order to study the effects of chlorides, on productivity and on the composition of juice. No toxic or stimulating effect was found, and there was no change in yield, in degree of purity of the juice, in general aspect of plants or in colour of leaves and culms. No difference was observed between potassium sulphate or chloride, as source of potash for sugar cane culture. Data collected and the literature cited suggest: (a) that the use of the variety Co 290 is indicated for soils rich in chlorine, such as the saline soils of the North-east and Atlantic Coast of Brazil; (b) that it is necessary to extend studies in Research Institutes and Agricultural Experiment Stations of the country to verify the behaviour of other varieties of sugar cane in the types of soils mentioned, especially with respect their yielding capacity. The authors are already planning such investigations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is a joined publication of the Depts. of Genetics and of Technology, of the E. S. A. "Luiz de Queiroz", Universidade de São Paulo, and deals with the variation of the percentage oil content in the whole seeds, the embryos and the seed-coat of 28 varieties of castor-beans (Ricinus communis, L.). Primarily, the authors, as a justification of this paper, make reference to the applications which castor-oil has in industry, medicine, etc. In accordance with the weight of 100 seeds, the varieties of castor-beans were classified into 3 classes : small seeds (100 seeds less than 30 g), medium seeds (100 seeds between 30 g and 60) and large seeds (100 seeds more than 60 g). The percentage of oil in the seed, embryo and seed-coat, the dimensions of the seeds and the weight of 100 seeds are given for every variety in table 1. In order to obtain an estimate of the variability for the methods of determination of the oil percentage, in the 3 differents parts of the seeds and also in the 3 groups of seeds, the coefficient of variability was calculate (table 2). It is showed that the variation in the seed and embryo is low and that in the seed-coat is very high. The analysis of variance, with regard to the difference among the 3 types of seeds (small, medium and large), among the 3 parts of the seed (whole seed, embryo and seed-coat) and residual error, is given in table 3. Only, the oil content of whole seeds among types of seeds was significant at the 5% level. The t test among the correspondent means is not significant for the difference between medium and large seeds is significant between both these types (medium and large) and small seeds. The fiducial limits in relation to the mean of the oil percentage in the 3 differents types of seed, show that there is one variety (n. 1013-2), which has a percentage of oil, in the medium type of seed, significantly at the 5% level (table 4), higher than the general mean. Since the distribution of the percentage of oil in the seedcoat is discontinuous, 5 groups were established (table 5). All the differences between groups are significant (table 6). For practical purposes, when we have to remove the seed coat, one should eliminate those varieties which loose at least 3% of oil by this procedure. There is a significant linear correlation at 5% level between the percentage of oil in the seed and in the embryo, of the smali and medium type of seeds (table 7), and also, when taking the 3 types together (lower part of table 7), one finds that the same is true. Also, the correlation between the percentages of oil in the embryo and in the seed-coat of the 3 types together is significant at 5% level. According to the results obtained in relation to the percentage in 28 varieties studied, it can be recommended, for breeding purposes, to work only with those varieties which belong to the medium and the large types of seeds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work deals with the study of the effects of selfing and crossing in pures lines of okra inbred for five generations and the methods of breeding in this plant. This work is party of a large program of this Dept. to study heterosis in plants naturally self pollinated. The technic of selfing consists of tying with a string the floral bud before anthesis. To make controlled crosses, it is necessary to emasculate the flowers removing the anthers with small forceps, and to cover the flowers with a bag and wait for 1 or 2 days until the blooming. Also, the male parents are covered with paper bags prior to flowering. Finally, the pollen is brushed lightly over the stigma of the emasculated flowers and the females unit rebagged. The authors have tried without sucess the technic of soda fountain straw used for cotton. The treatments were: I) Fl of the cross pure-line x foreign variety (not improved by breeding). II) Fl of the cross pure-line x parental variety and III) pure-line 5 generations inbred. In order to compare the production of these three treatments, a randomized blocks with 4 replications was designed; since we had 6 families in each treatment, the total number was: 4 replications x 3 treatments x 6 families: = 72. Each familiy was planted in lines of 10 plants. Owing to the design devised, the present experiment corresponds to a split-plot. The analysis of variance of the number and the weight of the pods is given in tables 2 and 4, and shows the following: 1) The production expressed in both numbers and weights of the cross, - pure lines x foreign variety - was statistically smaller than the others treatments, i, e., the cross of pure-lines x parental variety and the pure-lines; 2) The production of the treatments pure-lines x parental variety and selfed purelines was the same. It was proved that the selfing do not produce harmful effects in okra, it was benefical, since after 5 inbred generations the production was the same when compared with Fl of the parental variety. Also, the methods of pure-lines are indicated to improve varieties of okra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors carried out joint analyses of data referring to six experiments with varieties of sugar cane, carried out by SEGALLA and ALVAREZ in six locations in the State of S. Paulo, Brasil. The analyses showed that for cane or sugar yield, either for plant-cane or for plant-cane together with the first two ratoons, the best five varieties were CB 40-69, CB 41-76, CB 40-13, CB 40-19 and Co 419. The yield of sugar cane/for all varieties studied is given below, in metric tons produced in plant cane and the first two ratoons. Varieties Yield of sugar cane (tons/hectare) CB 40-69 205.2 CB 41-76 204.5 CB 40-13 199.4 CB 40-19 192.4 Co 419 192.1 CB 38-30 182.1 CB 41-70 181.5 Co 413 177.5 CB 38-22 174.4 CB 36-14 172.8 Co 290 166.6 CB 41-35 147.9 The least significant difference by Tukey's test, at the 5% level of probability, is A = 28.3 metric tons/hectare.