954 resultados para VIBRATIONAL FREQUENCIES
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms
Resumo:
A 35Cl NQR study of 2-chloro-3-pyridinol showed the presence of four NQR signals at 77 K. One of the lines showed a positive temperature coefficient of the NQR frequency. 1H NMR studies showed the presence of intramolecular hydrogen bonding, and the anomalous NQR temperature dependence has been explained in terms of Bayer and hydrogen bond effects. The room temperature x-ray structure and the low-temperature NQR data suggest the presence of a phase transition.
Resumo:
The analysis of transient electrical stresses in the insulation of high voltage rotating machines is rendered difficult because of the existence of capacitive and inductive couplings between phases. The Published theories ignore many of the couplings between phases to obtain the solution. A new procedure is proposed here to determine the transient voltage distribution on rotating machine windings. All the significicant capacitive and inductive couplings between different sections in a phase and between different sections in different phases have been considered in this analysis. The experimental results show good correlation with those computed.
Resumo:
Infrared spectra are recorded for S-methyl dithiocarbazate and its N-deuterated compound in two molecular conformations in the solid state and in solution between 4000 and 30 cm−1. The assignments have been supported from a complete normal coordinate analysis; the conformation sensitive bands of the –CSNHNH2 grouping are discussed. The assignments are compared with those of related molecules to check the internal consistency and to obtain the pattern of the characteristic bands of thiocarbazoyl (–CSNHNH2) group. The magnitudes of the C–N and S–CH3 torsional barriers are estimated from the force constants.
Resumo:
Raman and infrared spectra of imidazoline-2-thione (IMZT) and imidazoline-2-one (IMZO) have been recorded. Normal coordinate analyses have been performed for all the fundamental vibrations of IMZT, IMZT-d2 and IMZO employing a Urey—Bradley potential function supplemented with valence type force constants for the out of plane modes. The results of the vibrational analyses are discussed in relation to the assignments in related molecules. The vibrational assignments for IMZT and IMZO have been compared with those in structurally similar molecules and the need to obtain more reliable band assignments for some of the molecules considered is emphasised.
Resumo:
The Raman and infrared spectra of N-(2-pyridyl) thioformamide and N-(2-pyridyl)-thioacetamide have been measured. The assignment of the bands is aided by the complete normal coordinate treatment for all the vibrations of N-(2-pyridyl)thioformamide and its N-deuterated molecule using a Urey—Bradley force function for the in-plane vibrations and a valence force function for the out of plane vibrations. Variable temperature 1H NMR study of the two pyridylthionamides has also been performed. It is inferred that while N-(2-pyridyl)thioformamide favours a cis —CSNH— group, the other compound favours a trans —CSNH— grouping at ambient temperature.
Resumo:
The rapid data acquisition, natural fluorescence rejection and experimental ease are the advantages of the ultra-fast Raman loss scattering (URLS) which makes it a unique and valuable molecular structure-determining technique. URLS is an analogue of stimulated Raman scattering (SRS) but far more sensitive than SRS. It involves the interaction of two laser sources, viz. a picosecond (ps) pulse and white light, with the sample leading to the generation of loss signal on the higher energy (blue) side with respect to the wavelength of the ps pulse, unlike the gain signal observed on the red side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. Also, the very prerequisite of the experimental protocol for signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which always appears on the red side. Unlike coherent anti-Stokes Raman scattering, URLS signals are not precluded by non-resonant background under resonance condition and also being a self-phase matched process, it is experimentally easier.
Resumo:
The Raman and infrared absorption spectra of sodium ammonium selenate dihydrate (SASD) have been recorded both above and below the ferroelectric transition temperature. The deuterated SASD has also been investigated. The results support the view that while there is only one type of NH4+ ions in the para electric phase, there are two types of NH4+ ions below Tc. The water molecules undergo considerable change and non-equivalent O-H bonds are produced below Tc. The SeO2/4- ions undergo very little change.
Natural frequencies of rectangular orthotropic plates with a pair of parallel edges simply supported
Resumo:
Solutions of the exact characteristic equations for the title problem derived earlier by an extension of Bolotin's asymptotic method are considered. These solutions, which correspond to flexural modes with frequency factor, R, greater than unity, are expressed in convenient forms for all combinations of clamped, simply supported and free conditions at the remaining pair of parallel edges. As in the case of uniform beams, the eigenvalues in the CC case are found to be equal to those of elastic modes in the FF case provided that the Kirchoff's shear condition at a free edge is replaced by the condition. The flexural modes with frequency factor less than unity are also investigated in detail by introducing a suitable modification in the procedure. When Poisson's ratios are not zero, it is shown that the frequency factor corresponding to the first symmetric mode in the free-free case is less than unity for all values of side ratio and rigidity ratios. In the case of one edge clamped and the other free it is found that modes with frequency factor less than unity exist for certain dimensions of the plate—a fact hitherto unrecognized in the literature.
Resumo:
A method for finding the roots of the equation D = O in a multicomponent plasma with positive and negative ion species is given. The use of dispersion diagrams (omega-k diagrams) for right- and left-circularly polarized waves is made to locate these roots in pass or stop bands. ©1973 American Institute of Physics.
Resumo:
This thesis contains five experimental spectroscopic studies that probe the vibration-rotation energy level structure of acetylene and some of its isotopologues. The emphasis is on the development of laser spectroscopic methods for high-resolution molecular spectroscopy. Three of the experiments use cavity ringdown spectroscopy. One is a standard setup that employs a non-frequency stabilised continuous wave laser as a source. In the other two experiments, the same laser is actively frequency stabilised to the ringdown cavity. This development allows for increased repetition rate of the experimental signal and thus the spectroscopic sensitivity of the method is improved. These setups are applied to the recording of several vibration-rotation overtone bands of both H(12)C(12)CH and H(13)C(13)CH. An intra-cavity laser absorption spectroscopy setup that uses a commercial continuous wave ring laser and a Fourier transform interferometer is presented. The configuration of the laser is found to be sub-optimal for high-sensitivity work but the spectroscopic results are good and show the viability of this type of approach. Several ro-vibrational bands of carbon-13 substituted acetylenes are recorded and analysed. Compared with earlier work, the signal-to-noise ratio of a laser-induced dispersed infrared fluorescence experiment is enhanced by more than one order of magnitude by exploiting the geometric characteristics of the setup. The higher sensitivity of the spectrometer leads to the observation of two new symmetric vibrational states of H(12)C(12)CH. The precision of the spectroscopic parameters of some previously published symmetric states is also improved. An interesting collisional energy transfer process is observed for the excited vibrational states and this phenomenon is explained by a simple step-down model.
Resumo:
Rotational isomerism of S-methyl N-methyl dithiocarbamate (MMDTC) has been investigated by means of variable temperature proton NMR and i.r. spectroscopy. The i.r. spectra of MMDTC as neat, solution and at sub-ambient temperatures have been examined. Normal vibrational analysis of all the fundamentals of MMDTC has been carried out, the vibrational assignment has been compared with those of related secondary thioamides to note the consistency in the assignments and to obtain the pattern characteristic of the secondary thioamide vibrations.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.