950 resultados para Unmanned Aerial System (UAS)
Resumo:
The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.
Resumo:
Il versante sinistro delle Gole di Scascoli (BO) è caratterizzato da una marcata tendenza evolutiva per crollo e ribaltamento. Negli ultimi 25 anni si sono verificati eventi parossistici con volumi di roccia coinvolti rispettivamente di 7000 m3, 20000 m3 e 35000 m3. Il sito è di grande rilevanza a causa del forte fattore di rischio rappresentato per la strada di fondovalle ad esso adiacente. Il lavoro di tesi è stato finalizzato allo studio dei fenomeni di versante di una parete rocciosa inaccessibile nota in letteratura come “ex-Mammellone 1” mediante tecniche di telerilevamento quali TLS (Terrestrial Laser Scanning) e CRP (Close Range Photogrammetry) al fine affiancare il rilievo geomeccanico soggettivo dell’area svolto nel 2003 da ENSER Srl in seguito ai fenomeni di crollo del 2002. Lo sviluppo di tecnologie e metodi innovativi per l’analisi territoriale basata sull’impiego di UAV (Unmanned Aerial Vehicle, meglio noti come Droni), associata alle tecniche di fotogrammetria digitale costituisce un elemento di notevole ausilio nelle pratiche di rilevamento in campo di sicurezza e tempi di esecuzione. Il lavoro ha previsto una prima fase di rilevamento areo-fotogrammetrico mediante strumentazione professionale e amatoriale, a cui è seguita l’elaborazione dei rispettivi modelli. I diversi output sono stati confrontati dal punto di vista geomorfologico, geometrico, geomeccanico e di modellazione numerica di caduta massi. Dal lavoro è stato possibile indagare l’evoluzione morfologica del sito in esame negli ultimi 10 anni, confrontare diversi metodi di rilevamento e analisi dati, sperimentare la robustezza e ripetibilità geometrica del metodo fotogrammetrico per il rilievo di fronti rocciosi e mettere a punto un metodo semiautomatico di individuazione e analisi delle giaciture delle discontinuità.
Resumo:
L’oggetto di studio di questa tesi consiste nel primo approccio di sperimentazione dell’utilizzo di tecnologia UAV (Unmanned aerial vehicle, cioè velivoli senza pilota), per fotogrammetria ai fini di una valutazione di eventuali danni ad edifici, a seguito di un evento straordinario o disastri naturali. Uno degli aspetti più onerosi in termini di tempo e costi di esecuzione, nel processamento di voli fotogrammetrici per usi cartografici è dovuto alla necessità di un appoggio topografico a terra. Nella presente tesi è stata valutata la possibilità di effettuare un posizionamento di precisione della camera da presa al momento dello scatto, in modo da ridurre significativamente la necessità di Punti Fotografici di Appoggio (PFA) rilevati per via topografica a terra. In particolare si è voluto sperimentare l’impiego di stazioni totali robotiche per l’inseguimento e il posizionamento del velivolo durante le acquisizioni, in modo da simulare la presenza di ricevitori geodetici RTK installati a bordo. Al tempo stesso tale metodologia permetterebbe il posizionamento di precisione del velivolo anche in condizioni “indoor” o di scarsa ricezione dei segnali satellitari, quali ad esempio quelle riscontrabili nelle attività di volo entro canyon urbani o nel rilievo dei prospetti di edifici. Nell’ambito della tesi è stata, quindi, effettuata una analisi di un blocco fotogrammetrico in presenza del posizionamento di precisione della camera all’istante dello scatto, confrontando poi i risultati ottenuti con quelli desumibili attraverso un tradizionale appoggio topografico a terra. È stato quindi possibile valutare le potenzialità del rilievo fotogrammetrico da drone in condizioni vicine a quelle tipiche della fotogrammetria diretta. In questo caso non sono stati misurati però gli angoli di assetto della camera all’istante dello scatto, ma si è proceduto alla loro stima per via fotogrammetrica.
Resumo:
Remote Sensing has been used for decades, and more and more applications are added to its repertoire. With this study we aim to show the use of Remote Sensing in the field of vegetation recovery monitoring in burned areas and the added value of data with a high spatial resolution. This was done by analysing both Landsat 7 and 8 scenes, after the forest fire of summer 2012 in the parish of Calde, in the central region of Portugal, as well as an orthophoto produced with images acquired by an unmanned aerial vehicle.
Resumo:
The main thesis of this article is that the increasing recourse to the use of unmanned aerial systems in asymmetric warfare and the beginning routinization of U.S. drone operations represent part of an evolutionary change in the spatial ordering of global politics -- Using a heuristic framework based on actor-network theory, it is argued that practices of panoptic observation and selective airstrikes, being in need of legal justification, contribute to a reterritorialization of asymmetric conflicts -- Under a new normative spatial regime, a legal condition of state immaturity is constructed, which establishes a zone of conditional sovereignty subject to transnational aerial policing -- At the same time, this process is neither a deterministic result of the new technology nor a deliberate effect of policies to which drones are merely neutral instruments -- Rather, military technology and political decisions both form part of a long chain of action which has evolved under the specific circumstances of recent military interventions
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
En el año 2016 se vendieron en EE.UU más de un millón de Unmanned Aerial Vehicles (UAVs, Vehículos aéreos no tripulados), casi el doble que el año anterior, país del que se dispone de información. Para el año 2020 se estima que este mercado alcance los 5.600 millones de dólares en todo el mundo, creciendo a un ritmo del 30% anual. Este crecimiento demuestra que existe un mercado en expansión con muchas y diversas oportunidades de investigación. El rango de aplicaciones en los que se utiliza este tipo de vehículos es innumerable. Desde finales del s.XX, los UAVs han estado presentes en multitud de aplicaciones, principalmente en misiones de reconocimiento. Su principal ventaja radica en que pueden ser utilizados en situaciones de alto riesgo sin suponer una amenaza para ningún tripulante. En los últimos años, la fabricación de vehículos asequibles económicamente ha permitido que su uso se extienda a otros sectores. A día de hoy uno de los campos en los que ha adquirido gran relevancia es en agricultura, contribuyendo a la automatización y monitorización de cultivos, pero también se ha extendido su uso a diferentes sistemas, tales como seguridad, cartografía o monitorización, entre otros [1]. Es en esta situación en la que se propone el proyecto SALACOM [2], que explora la posibilidad de utilizar esta tecnología en sistemas de repuesta rápida para la detección y contención de vertidos contaminantes en entornos acuáticos con el apoyo de vehículos autónomos marinos de superficie (USV, Unmanned Surface Vehicles). En el mencionado proyecto se pretende utilizar sistemas UAVs para detectar y analizar las zonas de vertido y proveer la información respecto a la localización y las técnicas de contención adecuadas a los sistemas USV. Una vez se haya realizado el análisis de la situación del vertido, los USV trabajarían conjuntamente con los UAVs para desplegar las barreras de protección seleccionadas en la zona afectada. Para esto, los UAVs o drones, términos similares en lo que respecta a este proyecto y que a lo largo de esta memoria se usarán indistintamente, deben ser capaces de despegar desde los USV y volver a aterrizar sobre ellos una vez realizada su labor. El proyecto que se describe en la presente memoria se centra en la fase de aterrizaje y, más concretamente, en la detección de la plataforma seleccionada como plantilla mediante técnicas de tratamiento de imágenes. Esto serviría como sistema de apoyo para guiar el dron hacia la plataforma para que pueda realizar el descenso correctamente y finalizar así su misión o bien para realizar operaciones de recarga de la batería. El dron está equipado con la correspondiente cámara de visión a bordo, con la que obtiene las imágenes, las procesa e identifica la plataforma para dirigirse hacia ella, si bien, dado que el sistema de procesamiento de imágenes no se encuentra totalmente operativo, este trabajo se centra en el desarrollo de una aplicación software independiente del sistema de visión a bordo del dron, basada en el desarrollo de técnicas de reconocimiento de la plataforma. La plataforma a utilizar proviene de una patente [3], consistente en una figura geométrica con formas características, de muy difícil aparición en entornos de exterior. La figura pintada en negro se halla impresa sobre un panel de fondo blanco de 1m × 1m de superficie. En este trabajo se han explorado diversas opciones disponibles para realizar la identificación de las regiones de interés. El principal objetivo es realizar la selección de una tecnología que pueda cumplir potencialmente con los criterios necesarios para llevar a cabo la tarea y seleccionar los métodos de detección adecuados para realizar la identificación de la figura contenida en la plataforma. Se ha pretendido utilizar tecnologías de fácil uso, amplío soporte y, cuando ha sido posible, de código libre. Todo ello integrado en una aplicación informática, que es la que se presenta en el presente trabajo.
Resumo:
A evolução tecnológica e a necessidade operacional de Unmanned Aircraft Systems (UAS) ditarão, a curto trecho, a sua expansão funcional à quase totalidade das áreas de missão tipicamente reservadas às plataformas tripuladas. Talvez a maior barreira à adoção dos UAS de forma plena, pela United States Air Force (USAF) em particular, e por extensão a outras Forças Aéreas que partilhem de valores semelhantes, será a alteração da cultura organizacional, no sentido de promover a aceitação dos sistemas não tripulados como capacidades idênticas às providenciadas pelas aeronaves tripuladas. Este artigo pretende explorar algumas das forças dissociativas que resistem à integração dos UAS na estrutura de força de uma instituição, tomando como exemplo a USAF enquanto maior utilizadora destes sistemas e influenciadora das tendências futuras do Poder Aéreo. Para melhor percebermos os desafios culturais que despontam do emprego em larga escala de UAS de combate, teremos de percorrer o processo de independência da USAF e a validação estratégica do Poder Aéreo enquanto instrumento militar preferencial
Resumo:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.^
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
Resumo:
There is an increased interest on the use of UAVs for environmental research such as tracking bush fires, volcanic eruptions, chemical accidents or pollution sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A method for generating sparse plumes in a virtual environment was also developed. Results indicated the ability of the algorithms to track plumes in 2D and 3D. The system has been tested with hardware in the loop (HIL) simulations and in flight using a CO2 gas sensor mounted to a multi-rotor UAV. The UAV is controlled by the plume tracking algorithm running on the ground control station (GCS).
Resumo:
Maintaining the ecosystem is one of the main concerns in this modern age. With the fear of ever-increasing global warming, the UK is one of the key players to participate actively in taking measures to slow down at least its phenomenal rate. As an ingredient to this process, the Springer vehicle was designed and developed for environmental monitoring and pollutant tracking. This special issue paper highlighted the Springer hardware and software architecture including various navigational sensors, a speed controller, and an environmental monitoring unit. In addition, details regarding the modelling of the vessel were outlined based mainly on experimental data. The formulation of a fault tolerant multi-sensor data fusion technique was also presented. Moreover, control strategy based on a linear quadratic Gaussian controller was developed and simulated on the Springer model.
Gaussian controller is developed and simulated on the Springer model.