967 resultados para Theoretical Computer Science
Resumo:
Digital Rights Management Systems (DRMS) are seen by content providers as the appropriate tool to, on the one hand, fight piracy and, on the other hand, monetize their assets. Although these systems claim to be very powerful and include multiple protection technologies, there is a lack of understanding about how such systems are currently being implemented and used by content providers. The aim of this paper is twofold. First, it provides a theoretical basis through which we present shortly the seven core protection technologies of a DRMS. Second, this paper provides empirical evidence that the seven protection technologies outlined in the first section of this paper are the most commonly used technologies. It further evaluates to what extent these technologies are being used within the music and print industry. It concludes that the three main Technologies are encryption, password, and payment systems. However, there are some industry differences: the number of protection technologies used, the requirements for a DRMS, the required investment, or the perceived success of DRMS in fighting piracy.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.
Resumo:
La expansión experimentada por la informática, las nuevas tecnologías e internet en los últimos años, no solo viene dada por la evolución del hardware subyacente, sino por la evolución del desarrollo de software y del crecimiento del número de desarrolladores. Este incremento ha hecho evolucionar el software de unos sistemas de gestión basados en ficheros, prácticamente sin interfaz gráfico y de unos pocos miles de líneas a grandes sistemas distribuidos multiplataforma. El desarrollo de estos grandes sistemas, requiere gran cantidad de personas involucradas en el desarrollo, y que las herramientas de desarrollo hayan crecido también para facilitar su análisis, diseño, codificación, pruebas, implantación y mantenimiento. La base de estas herramientas software las proveen las propias plataformas de desarrollo, pero la experiencia de los desarrolladores puede aportar un sinfín de utilidades y de técnicas que agilicen los desarrollos y cumplan los requisitos del software en base a la reutilización de soluciones lo suficientemente probadas y optimizadas. Dichas herramientas se agrupan ordenadamente, creando así frameworks personalizados, con herramientas de todo tipo, clases, controles, interfaces, patrones de diseño, de tal manera que se dan soluciones personalizadas a un amplio número de problemas para emplearlas cuantas veces se quiera, bien marcando directrices de desarrollo mediante el uso de patrones, bien con la encapsulación de complejidades de tal modo que los desarrolladores ya dispongan de componentes que asuman cierta lógica o cierta complejidad aliviando así la fase de construcción. En este trabajo se abordan temas sobre las tecnologías base y plataformas de desarrollo para poder acometer la creación de un framework personalizado, necesidades a evaluar antes de acometerlo, y técnicas a emplear para la consecución del mismo, orientadas a la documentación, mantenimiento y extensión del framework. La exposición teórica consiste en mostrar y evaluar los requisitos para crear un framework, requisitos de la plataforma de desarrollo, y explicar cómo funcionan las grandes plataformas de desarrollo actuales, que elementos los componen y su funcionamiento, así como marcar ciertas pautas de estructuración y nomenclatura que el desarrollo de un framework debe contemplar para su mantenimiento y extensión. En la parte metodológica se ha usado un subconjunto de Métrica V3, ya que para el desarrollo de controles no aplica dicha metodología en su totalidad, pero contempla el catálogo de requisitos, los casos de uso, diagramas de clase, diagramas de secuencia, etc… Aparte de los conceptos teóricos, se presenta un caso práctico con fines didácticos de cómo parametrizar y configurar el desarrollo bajo la plataforma .NET. Dicho caso práctico consiste en la extensión de un control de usuario genérico de la plataforma .NET, de tal modo que se aplican conceptos más allá del hecho de crear funciones como las funcionalidades que puede brindar un API. Conceptos sobre como extender y modificar controles ya existentes, que interactúan por medio de eventos con otros controles, con vistas a que ese nuevo control forme parte de una biblioteca de controles de usuario personalizados ampliamente divulgada. Los controles de usuario son algo que no solo tienen una parte funcional, sino que también tienen una parte visual, y definiciones funcionales distintas de las típicas del software de gestión, puesto que han de controlar eventos, visualizaciones mientras se dan estos eventos y requisitos no funcionales de optimización de rendimiento, etc… Para el caso práctico se toma como herramienta la plataforma de desarrollo .Net Framework, en todas sus versiones, ya que el control a extender es el control ListView y hacerlo editable. Este control está presente en todas las versiones de .NET framework y con un alto grado de reutilización. Esta extensión muestra además como se puede migrar fácilmente este tipo de extensiones sobre todos los frameworks. Los entornos de desarrollo usados son varias versiones de Visual Studio para el mostrar dicha compatibilidad, aunque el desarrollo que acompaña este documento esté realizado sobre Visual Studio 2013. ABSTRACT The expansion in computer science, new technologies and the Internet in recent years, not only is given by the evolution of the underlying hardware, but for the evolution of software development and the growing number of developers. This increase has evolved software from management systems based on files almost without graphical interface and a few thousand of code lines, to large multiplatform distributed systems. The development of these large systems, require lots of people involved in development, and development tools have also grown to facilitate analysis, design, coding, testing, deployment and maintenance. The basis of these software tools are providing by their own development platforms, but the experience of the developers can bring a lot of utilities and techniques to speed up developments and meet the requirements of software reuse based on sufficiently proven solutions and optimized. These tools are grouped neatly, creating in this way custom frameworks, with tools of all types, classes, controls, interfaces, design patterns,… in such a way that they provide customized solutions to a wide range of problems to use them many times as you want to occur, either by dialing development guidelines by using patterns or along with the encapsulation of complexities, so that developers already have components that take some logic or some complexity relieving the construction phase. This paper cover matters based on technologies and development platforms to undertake the creation of a custom framework, needs to evaluate before rush it and techniques to use in order to achieve it, a part from techniques oriented to documentation, maintenance and framework extension. The theoretical explanation consists in to demonstrate and to evaluate the requirements for creating a framework, development platform requirements, and explain how large current development platforms work, which elements compose them and their operation work, as well as mark certain patterns of structure and nomenclature that the development of a framework should include for its maintenance and extension. In the methodological part, a subset of Métrica V3 has been used, because of, for the development of custom controls this methodology does not apply in its entirety, but provides a catalogue of requirements, use cases, class diagrams, sequence diagrams, etc ... Apart from the theoretical concepts, a study case for teaching purposes about how to parameterize and configure the development under the .NET platform is presented. This study case involves the extension of a generic user control of the .NET platform, so that concepts apply beyond the fact of creating functions as the functionalities that can provide an API. Concepts on how to extend and modify existing controls that interact through events with other controls, overlooking that new control as a part of a custom user controls library widely publicized. User controls are something that not only have a functional part, but also have a visual part, and various functional definitions of typical management software, since that they have to control events, visualizations while these events are given and not functional of performance optimization requirements, etc ... For the study case the development platform .Net Framework is taken as tool, in all its versions, considering that control to extend is the ListView control and make it editable. This control is present in all versions of .NET framework and with a high degree of reuse. This extension also shows how you can easily migrate these extensions on all frameworks. The used development environments are several versions of Visual Studio to show that compatibility, although the development that accompanies this document is done on Visual Studio 2013.
Resumo:
Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.
Resumo:
Learning and teaching processes are continually changing. Therefore, design of learning technologies has gained interest in educators and educational institutions from secondary school to higher education. This paper describes the successfully use in education of social learning technologies and virtual laboratories designed by the authors, as well as videos developed by the students. These tools, combined with other open educational resources based on a blended-learning methodology, have been employed to teach the subject of Computer Networks. We have verified not only that the application of OERs into the learning process leads to a significantly improvement of the assessments, but also that the combination of several OERs enhances their effectiveness. These results are supported by, firstly, a study of both students’ opinion and students’ behaviour over five academic years, and, secondly, a correlation analysis between the use of OERs and the grades obtained by students.
Resumo:
Designing educational resources allow students to modify their learning process. In particular, on-line and downloadable educational resources have been successfully used in engineering education the last years [1]. Usually, these resources are free and accessible from web. In addition, they are designed and developed by lecturers and used by their students. But, they are rarely developed by students in order to be used by other students. In this work-in-progress, lecturers and students are working together to implement educational resources, which can be used by students to improve the learning process of computer networks subject in engineering studies. In particular, network topologies to model LAN (Local Area Network) and MAN (Metropolitan Area Network) are virtualized in order to simulate the behavior of the links and nodes when they are interconnected with different physical and logical design.
Resumo:
Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with enfasis on readability and understanding rather than on efficiency. However, the library can also be used for research purposes. JavaVis is an open source Java library, oriented to the teaching of Computer Vision. It consists of a framework with several features that meet its demands. It has been designed to be easy to use: the user does not have to deal with internal structures or graphical interface, and should the student need to add a new algorithm it can be done simply enough. Once we sketch the library, we focus on the experience the student gets using this library in several computer vision courses. Our main goal is to find out whether the students understand what they are doing, that is, find out how much the library helps the student in grasping the basic concepts of computer vision. In the last four years we have conducted surveys to assess how much the students have improved their skills by using this library.
Resumo:
Software erosion can be controlled by periodically checking for consistency between the de facto architecture and its theoretical counterpart. Studies show that this process is often not automated and that developers still rely heavily on manual reviews, despite the availability of a large number of tools. This is partially due to the high cost involved in setting up and maintaining tool-specific and incompatible test specifications that replicate otherwise documented invariants. To reduce this cost, our approach consists in unifying the functionality provided by existing tools under the umbrella of a common business-readable DSL. By using a declarative language, we are able to write tool-agnostic rules that are simple enough to be understood by non-technical stakeholders and, at the same time, can be interpreted as a rigorous specification for checking architecture conformance
Resumo:
Blind deconvolution is the problem of recovering a sharp image and a blur kernel from a noisy blurry image. Recently, there has been a significant effort on understanding the basic mechanisms to solve blind deconvolution. While this effort resulted in the deployment of effective algorithms, the theoretical findings generated contrasting views on why these approaches worked. On the one hand, one could observe experimentally that alternating energy minimization algorithms converge to the desired solution. On the other hand, it has been shown that such alternating minimization algorithms should fail to converge and one should instead use a so-called Variational Bayes approach. To clarify this conundrum, recent work showed that a good image and blur prior is instead what makes a blind deconvolution algorithm work. Unfortunately, this analysis did not apply to algorithms based on total variation regularization. In this manuscript, we provide both analysis and experiments to get a clearer picture of blind deconvolution. Our analysis reveals the very reason why an algorithm based on total variation works. We also introduce an implementation of this algorithm and show that, in spite of its extreme simplicity, it is very robust and achieves a performance comparable to the top performing algorithms.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
Bibliography: p. 23-34.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
Bibliography: p. 43.