896 resultados para Temporal lobe epilepsy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapters one to three are an introduction to photosensitive epilepsy, electroencephalography (EEG) and the magnocellular and parvocellular visual pathways. Photoparoxysmal response (PPR) are strongly associated with photosensitive epilepsy. Chapters four to nine investigated whether occipital spikes were associated with PPR and hence with photosensitive epilepsy. The chapters investigated whether the response types showed similar dependence on stimulus characteristics using EEG. Chapters four and five found that occipital spikes and PPR showed different dependence on colour and luminance contrast. The differences were consistent with the magnocellular pathway mediating occipital spikes and the pavocellular pathway mediating PPR. The study in chapter eight found that monocular occlusion had a significantly greater effect on PPR than on occipital spikes, which is further evidence against an association between the two types of response. Chapters six and seven showed that occipital spikes and PPR had similar optimum spatial and temporal frequencies. Chapter nine showed that both response types could be generated via stimulation of the periphery of the retina. However, these three chapters are not strong evidence of an association, as the results do not contradict the theory that the responses are generated via different pathways. The magnocellular and pavocellular pathways have similar optimum temporal and spatial frequencies and both are present in the periphery. In chapter ten, magnetoencephalography was used to estimate the source of activity underlying the components of the VEP and occipital spike. Changes in the amplitude and latency in the components of the normal VEP are associated with epilepsy. However, the source underlying the occipital spikes was not related to that underlying the components of the VEP so this is also removed as a source of evidence for an association between occipital spikes and photosensitive epilepsy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural bases of altered consciousness in patients with epilepsy during seizures and at rest have raised significant interest in the last decade. This exponential growth has been supported by the parallel development of techniques and methods to investigate brain function noninvasively with unprecedented spatial and temporal resolution. In this article, we review the contribution of magnetoencephalography to deconvolve the bioelectrical changes associated with impaired consciousness during seizures. We use data collected from a patient with refractory absence seizures to discuss how spike-wave discharges are associated with perturbations in optimal connectivity within and between brain regions and discuss indirect evidence to suggest that this phenomenon might explain the cognitive deficits experienced during prolonged 3/s spike-wave discharges. © 2013 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetoencephalographic (MEG) signals, like electroencephalographic (EEG) measures, are the direct extracranial manifestations of neuronal activation. The two techniques can detect time-varying changes in electromagnetic activity with a sub-millisecond time resolution. Extra-cranial electromagnetic measures are the cornerstone of the non-invasive diagnostic armamentarium in patients with epilepsy. Their extremely high temporal resolution – comparable to intracranial recordings – is the basis for a precise definition of onset and propagation of ictal and interictal abnormalities. Given the cost of the infrastructure and equipment, MEG has yet to develop into a routinely applicable diagnostic tool in clinical settings. However, in recent years, an increasing number of patients with epilepsy have been investigated – usually in the context of presurgical evaluation of refractory epilepsies – and initial encouraging results have been reported. We will briefly review the principles and the technology behind MEG and its contribution in the diagnostic work-up of patients with epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between student well-being and the other vital outcomes of school is unequivocal. Improved outcomes in all aspects of student well-being are positively associated with improved outcomes in all other aspects of schooling. This educational imperative only serves to strengthen and support the moral imperative for schools and schooling to be inclusive, supportive and nurturing in order to maintain and support student well-being. (Fraillon 2005, p. 12)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In two experiments, we study how the temporal orientation of consumers (i.e., future-oriented or present-oriented), temporal construal (distant future, near future), and product attribute importance (primary, secondary) influence advertisement evaluations. Data suggest that future-oriented consumers react most favorably to ads that feature a product to be released in the distant future and that highlight primary product attributes. In contrast, present-oriented consumers prefer near-future ads that highlight secondary product attributes. Study 2 shows that consumer attitudes are mediated by perceptions of attribute diagnosticity (i.e., the perceived usefulness of the attribute information). Together, these experiments shed light on how individual differences, such as temporal orientation, offer valuable insights into temporal construal effects in advertising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-termism among firms, the tendency to excessively discount long-term benefits and favour less valuable short-term benefits, has been a prominent issue in business and public policy debates but research to date has been inconclusive. We study how managers frame, interpret, and resolve problems of intertemporal choice in actual decisions by using computer aided text analysis to measure the frequency of top-team temporal references in 1653 listed Australian firms between 1992-2005. Contrary to short-termism arguments we find evidence of a significant general increase in Future orientation and a significant decrease in Current/Past orientation. We also show top-teams’ temporal orientation is related to their strategic orientation, specifically the extent to which they focus on Innovation-Expansion and Capacity Building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to characterise the functional outcome of 12 transfemoral amputees fitted with osseointegrated fixation using temporal gait characteristics. The objectives were (A) to present the cadence, duration of gait cycle, support and swing phases with an emphasis on the stride-to-stride and participant-to-participant variability, and (B) to compare these temporal variables with normative data extracted from the literature focusing on transfemoral amputees fitted with a socket and able-bodied participants. The temporal variables were extracted from the load applied on the residuum during straight level walking, which was collected at 200 Hz by a transducer. A total of 613 strides were assessed. The cadence (46±4 strides/min), the duration of the gait cycle (1.29±0.11 s), support (0.73±0.07 s, 57±3% of CG) and swing (0.56±0.07 s, 43±3% of GC) phases of the participants were 2% quicker, 3%, 6% shorter and 1% longer than transfemoral amputees using a socket as well as 11% slower, 9%, 6% and 13% longer than able-bodied, respectively. All combined, the results indicated that the fitting of an osseointegrated fixation has enabled this group of amputees to restore their locomotion with a highly functional level. Further longitudinal and cross-sectional studies would be required to confirm these outcomes. Nonetheless, the data presented can be used as benchmark for future comparisons. It can also be used as input in generic algorithms using templates of patterns of loading to recognise activities of daily living and to detect falls.