874 resultados para Tear gas.
Resumo:
Vaccination aims at generating memory immune responses able to protect individuals against pathogenic challenges over long periods of time. Subunit vaccine formulations based on safe, but poorly immunogenic, antigenic entities must be combined with adjuvant molecules to make them efficient against infections. We have previously shown that gas-filled microbubbles (MB) are potent antigen-delivery systems. This study compares the ability of various ovalbumin-associated MB (OVA-MB) formulations to induce antigen-specific memory immune responses and evaluates long-term protection toward bacterial infections. When initially testing dendritic cells reactivity to MB constituents, palmitic acid exhibited the highest degree of activation. Subcutaneous immunization of naïve wild-type mice with the OVA-MB formulation comprising the highest palmitic acid content and devoid of PEG2000 was found to trigger the more pronounced Th1-type response, as reflected by robust IFN-γ and IL-2 production. Both T cell and antibody responses persisted for at least 6 months after immunization. At that time, systemic infection with OVA-expressing Listeria monocytgenes was performed. Partial protection of vaccinated mice was demonstrated by reduction of the bacterial load in both the spleen and liver. We conclude that antigen-bound MB exhibit promising properties as a vaccine candidate ensuring prolonged maintenance of protective immunity.
Resumo:
Partial-thickness tears of the supraspinatus tendon frequently occur at its insertion on the greater tubercule of the humerus, causing pain and reduced strength and range of motion. The goal of this work was to quantify the loss of loading capacity due to tendon tears at the insertion area. A finite element model of the supraspinatus tendon was developed using in vivo magnetic resonance images data. The tendon was represented by an anisotropic hyperelastic constitutive law identified with experimental measurements. A failure criterion was proposed and calibrated with experimental data. A partial-thickness tear was gradually increased, starting from the deep articular-sided fibres. For different values of tendon tear thickness, the tendon was mechanically loaded up to failure. The numerical model predicted a loss in loading capacity of the tendon as the tear thickness progressed. Tendon failure was more likely when the tendon tear exceeded 20%. The predictions of the model were consistent with experimental studies. Partial-thickness tears below 40% tear are sufficiently stable to persist physiotherapeutic exercises. Above 60% tear surgery should be considered to restore shoulder strength.
Resumo:
Abstract The present report describes a case where typical findings of traumatic glenohumeral interposition of rotator cuff stumps were surgically confirmed. This condition is a rare complication of shoulder trauma. Generally, it occurs in high-energy trauma, frequently in association with glenohumeral joint dislocation. Radiography demonstrated increased joint space, internal rotation of the humerus and coracoid process fracture. In addition to the mentioned findings, magnetic resonance imaging showed massive rotator cuff tear with interposition of the supraspinatus, infraspinatus and subscapularis stumps within the glenohumeral joint. Surgical treatment was performed confirming the injury and the rotator cuff stumps interposition. It is important that radiologists and orthopedic surgeons become familiar with this entity which, because of its rarity, might be neglected in cases of shoulder trauma.
Resumo:
The present review summarizes the most relevant results of our research group obtained recently in the field of unimolecular reaction dynamics. The following processes are specifically analyzed: the isomerization, dissociation and elimination in methyl nitrite, the fragmentation reactions of the mercaptomethyl cation, the C-CO dissociation in the acetyl and propionyl radicals, and the decomposition of vinyl fluoride. In all the cases, only state- or energy-selected systems are considered. Special emphasis is paid to the possibility of systems exhibiting non-statistical behavior.
Resumo:
One of the primary goals for food packages is to protect food against harmful environment, especially oxygen and moisture. The gas transmission rate is the total gas transport through the package, both by permeation through the package material and by leakage through pinholes and cracks. The shelf life of a product can be extended, if the food is stored in a gas tight package. Thus there is a need to test gas tightness of packages. There are several tightness testing methods, and they can be broadly divided into destructive and nondestructive methods. One of the most sensitive methods to detect leaks is by using a non destructive tracer gas technique. Carbon dioxide, helium and hydrogen are the most commonly used tracer gases. Hydrogen is the lightest and the smallest of all gases, which allows it to escape rapidly from the leak areas. The low background concentration of H2 in air (0.5 ppm) enables sensitive leak detection. With a hydrogen leak detector it is also possible to locate leaks. That is not possible with many other tightness testing methods. The experimental work has been focused on investigating the factors which affect the measurement results with the H2leak detector. Also reasons for false results were searched to avoid them in upcoming measurements. From the results of these experiments, the appropriate measurement practice was created in order to have correct and repeatable results. The most important thing for good measurement results is to keep the probe of the detector tightly against the leak. Because of its high diffusion rate, the HZ concentration decreases quickly if holding the probe further away from the leak area and thus the measured H2 leaks would be incorrect and small leaks could be undetected. In the experimental part hydrogen, oxygen and water vapour transmissions through laser beam reference holes (diameters 1 100 μm) were also measured and compared. With the H2 leak detector it was possible to detect even a leakage through 1 μm (diameter) within a few seconds. Water vapour did not penetrate even the largest reference hole (100 μm), even at tropical conditions (38 °C, 90 % RH), whereas some O2 transmission occurred through the reference holes larger than 5 μm. Thus water vapour transmission does not have a significant effect on food deterioration, if the diameter of the leak is less than 100 μm, but small leaks (5 100 μm) are more harmful for the food products, which are sensitive to oxidation.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.
Resumo:
One of the main industries which form the basis of Russian Economical structure is oil and gas. This industry is also playing a significant role for CIS countries. Oil and gas industry is developing intensively attracting foreign investments. This situation is providing sustainable development of machinery production for hazardous areas. Operating in oil and gas areas is always related with occurrence of explosion gas atmospheres. Machines for hazardous areas must be furnished with additional protection of different types. Explosion protection is regulated with standards according to which equipment must be manufactured. In Russia and CIS countries explosion-proof equipment must be constructed in compliance with GOST standards. To confirm that equipment is manufactured according to standards’ requirements and is safe and reliable it must undergo the approval procedure. Certification in Russia is governed by Federal Laws and legislation. Each CIS country has its own approval certificates and permissions for operating in hazardous areas.
Resumo:
The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO2, CH4 and N2O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO2 emissions may decrease, the effect is counterbalanced by increased N2O emissions, especially since N2O has a 300-fold stronger greenhouse effect than CO2. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making
Resumo:
The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P)=I0exp(-P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature
Resumo:
Background: Intraocular pressure (IOP) is the pressure inside the eye that helps to maintain the integrity and the suitable form of the ocular globe. Precise and accurate measures of IOP are needed for the diagnosis as well as follow-up of glaucoma. In daily clinical practice, Goldmann applanation tonometer (GAT) and Non-contact tonometer (NCT) are the most common devices for measuring IOP. A close agreement between these methods has been showed, particularly in normotensive patients and a poor agreement, especially when IOP levels are above the normal range. Ophthalmologists have noticed a poor agreement between NCT and GAT, observing that by using NCT and after comparing with GAT, there is an overestimation of IOP readings, and particularly it occurs when the eyes are tearful. Previous studies investigate the effect of tears in Non-contact tonometer readings by the instillation of artificial tears, concluding in one of the studies that the variation was less than 1mmHg and not clinically significant, in contrast with another study which the increases were sadistically significant. Tear menisci are a thin strip of tear fluid located between the bulbar conjunctiva and the eyelid margins. We think that the overestimation of IOP readings using NCT could be due to the presence of a higher volume of tear in the lower tear meniscus which might cause an optical interference in the optoelectronic applanation monitoring system of this deviceObjectives: To research the influence of a certain volume of fluid in the lower tear meniscus on IOP measurements using the NCT in healthy eyes. Moreover, to investigate the agreement between IOP readings obtained by NCT and GAT in the presence and absence of this volume of fluidMethods: The study design will be transversal for diagnostic tests of repeated measures. We will study patients with no ocular pathology and IOP<21mmHg. It will consist in the measurement of IOP using NCT before and after the instillation of COLIRCUSÍ FLUOTEST, used as a volume of fluid in the lower tear meniscus, to observe if there will be differences using the paired t-test. Moreover, we will take IOP measures by GAT in order to know the agreement between these methods after and before the application of these eyedrops, using the ICC (intraclass correlation coefficient) and the Bland-Altmann method
Resumo:
Urinalysis of acetone is important to monitor workers occupationally exposed to acetone and/or isopropanol, as well as in diagnosis of some diseases related to lipid metabolism impairment. This work shows a sensitive, simple and rapid static headspace-gas chromatographic procedure for quantitative determination of acetone in urine. The method was applied to measure acetone in 207 samples from general population volunteers, resulting in a mean level of 1.12 mg/L (± 0.47) and a range of 0.20 - 1.95 mg/L. The method is reproducible and reliable, making it suitable for routine analysis of acetone in urine.
Resumo:
The presence of illicit drugs such as cocaine and marijuana in US paper currency is very well demonstrated. However, there is no published study describing the presence of cocaine and/or other illicit drugs in Brazilian paper currency. In this study, Brazilian banknotes were collected from nine cities, extracted and analyzed by capillary gas chromatography/mass spectrometry, in order to investigate the presence of cocaine. Bills were extracted with deionized water followed by ethyl acetate. Results showed that 93% of the bills presented cocaine in a concentration range of 2.38-275.10 µg/bill.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
In the present work, the development of a method based on the coupling of flow analysis (FA), hydride generation (HG), and derivative molecular absorption spectrophotometry (D-EAM) in gas phase (GP), is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm) of the absorption spectrum (190 - 300 nm) is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.