817 resultados para Teaching of Visual Arts. Teachers training. Experience.Seguir todas as regras
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila melanogaster
Resumo:
Activity-dependent modulation of sensory systems has been documented in many organisms, and is likely to be essential for appropriate processing of information during different behavioral states. However, the mechanisms underlying these phenomena, and often their functional consequences, remain poorly characterized. I investigated the role of octopamine neurons in the flight-dependent modulation observed in visual interneurons in the fruit fly Drosophila melanogaster. The vertical system (VS) cells exhibit a boost in their response to visual motion during flight compared to quiescence. Pharmacological application of octopamine evokes responses in quiescent flies that mimic those observed during flight, and octopamine neurons that project to the optic lobes increase in activity during flight. Using genetic tools to manipulate the activity of octopamine neurons, I find that they are both necessary and sufficient for the flight-induced visual boost. This work provides the first evidence that endogenous release of octopamine is involved in state-dependent modulation of visual interneurons in flies. Further, I investigated the role of a single pair of octopamine neurons that project to the optic lobes, and found no evidence that chemical synaptic transmission via these neurons is necessary for the flight boost. However, I found some evidence that activation of these neurons may contribute to the flight boost. Wind stimuli alone are sufficient to generate transient increases in the VS cell response to motion vision, but result in no increase in baseline membrane potential. These results suggest that the flight boost originates not from a central command signal during flight, but from mechanosensory stimuli relayed via the octopamine system. Lastly, in an attempt to understand the functional consequences of the flight boost observed in visual interneurons, we measured the effect of inactivating octopamine neurons in freely flying flies. We found that flies whose octopamine neurons we silenced accelerate less than wild-type flies, consistent with the hypothesis that the flight boost we observe in VS cells is indicative of a gain control mechanism mediated by octopamine neurons. Together, this work serves as the basis for a mechanistic and functional understanding of octopaminergic modulation of vision in flying flies.
Resumo:
Na virada para o século XXI artistas e curadores em bienais e outras exposições internacionais estão adotando formas colaborativas e educacionais de fazer arte e curadoria envolvendo artistas e não artistas, comunidades, escolas e outras instâncias sociais. Essas iniciativas criam encontros interdisciplinares onde imbricações entre arte e não-arte são colocadas em questão, considerando contextos sociopolíticos mundiais, a globalização e outros temas pós-colonialistas. A dissertação examina as aproximações e atravessamentos de culturas e identidades, questões de centro e periferia, local e global gerando entre-lugares e o interesse por propostas de site-oriented, geradoras de situações de convivência, compartilhamento de experiências coletivas e prática educativa. A pesquisa reflete sobre as intenções dos artistas, curadores, a participação do público e o diálogo entre diferentes discursos críticos e campos do conhecimento em projetos com essas características. O estudo de caso é o projeto Cadernos de Viagem, projeto de residência artística e exposição, realizado na 8 Bienal do Mercosul, em Porto Alegre, Brasil, 2011. Diversos teóricos como Homi Bhabha, Jacques Rancière, Nicolas Bourriaud, Claire Bishop, Grant Kester, Miwon Kwon, Moacir dos Anjos e Félix Guattari, são abordados, entre outros
Resumo:
A significant proportion of the processing delays within the visual system are luminance dependent. Thus placing an attenuating filter over one eye causes a temporal delay between the eyes and thus an illusion of motion in depth for objects moving in the fronto-parallel plane, known as the Pulfrich effect. We have used this effect to study adaptation to such an interocular delay in two normal subjects wearing 75% attenuating neutral density filters over one eye. In two separate experimental periods both subjects showed about 60% adaptation over 9 days. Reciprocal effects were seen on removal of the filters. To isolate the site of adaptation we also measured the subjects' flicker fusion frequencies (FFFs) and contrast sensitivity functions (CSFs). Both subjects showed significant adaptation in their FFFs. An attempt to model the Pulfrich and FFF adaptation curves with a change in a single parameter in Kelly's [(1971) Journal of the Optical Society of America, 71, 537-546] retinal model was only partially successful. Although we have demonstrated adaptation in normal subjects to induced time delays in the visual system we postulate that this may at least partly represent retinal adaptation to the change in mean luminance.
Resumo:
Eyes on Their Finger Tips deals with the traditional marine wisdom of a set of people and the rarest of rare experiences they have had at sea. Through these numerous chapters he takes us into the seas of the fishers. It is a voyage which we cannot make in reality. But through the heroic deeds of his father, the riddles of oldman Sebesti, the shark story of brother Kamalappan, and the rituals of his mother, we get a fascinating peep into the wisdom of the watery world of the small-scale fishers of Trivandrum, Kerala, India.
Resumo:
Whether mice perceive the depth of space dependent on the visual size of object targets was explored when visual cues such as perspective and partial occlusion in space were excluded. A mouse was placed on a platform the height of which is adjustable. The platform located inside a box in which all other walls were dark exception its bottom through that light was projected as a sole visual cue. The visual object cue was composed of 4x4 grids to allow a mouse estimating the distance of the platform relative to the grids. Three sizes of grids reduced in a proportion of 2/3 and seven distances with an equal interval between the platform and the grids at the bottom were applied in the experiments. The duration of a mouse staying on the platform at each height was recorded when the different sizes of the grids were presented randomly to test whether the Judgment of the mouse for the depth of the platform from the bottom was affected by the size information of the visual target. The results from all conditions of three object sizes show that time of mice staying on the platform became longer with the increase in height. In distance of 20 similar to 30 cm, the mice did not use the size information of a target to judge the depth, while mainly used the information of binocular disparity. In distance less than 20 cm or more than 30 cm, however, especially in much higher distance 50 cm, 60 cm and 70 cm, the mice were able to use the size information to do so in order to compensate the lack of binocular disparity information from both eyes. Because the mice have only 1/3 of the visual field that is binocular. This behavioral paradigm established in the current study is a useful model and can be applied to the experiments using transgenic mouse as an animal model to investigate the relationships between behaviors and gene functions.
Resumo:
Participants were exposed to concepts and information about Ecosystem Approach to Fisheries Management (EAFM) using a structured, participatory method of delivery. The learning strategy involved specifically designed exercises, using real examples, to consolidate learning. Daily monitoring and reviews were conducted together with pre-and post-course assessment.
Resumo:
Visual information is difficult to search and interpret when the density of the displayed information is high or the layout is chaotic. Visual information that exhibits such properties is generally referred to as being "cluttered." Clutter should be avoided in information visualizations and interface design in general because it can severely degrade task performance. Although previous studies have identified computable correlates of clutter (such as local feature variance and edge density), understanding of why humans perceive some scenes as being more cluttered than others remains limited. Here, we explore an account of clutter that is inspired by findings from visual perception studies. Specifically, we test the hypothesis that the so-called "crowding" phenomenon is an important constituent of clutter. We constructed an algorithm to predict visual clutter in arbitrary images by estimating the perceptual impairment due to crowding. After verifying that this model can reproduce crowding data we tested whether it can also predict clutter. We found that its predictions correlate well with both subjective clutter assessments and search performance in cluttered scenes. These results suggest that crowding and clutter may indeed be closely related concepts and suggest avenues for further research.