947 resultados para Systems dynamics
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.
Resumo:
This thesis contains dynamical analysis on four different scales: the Solar system, the Sun itself, the Solar neighbourhood, and the central region of the Milky Way galaxy. All of these topics have been handled through methods of potential theory and statistics. The central topic of the thesis is the orbits of stars in the Milky Way. An introduction into the general structure of the Milky Way is presented, with an emphasis on the evolution of the observed value for the scale-length of the Milky Way disc and the observations of two separate bars in the Milky Way. The basics of potential theory are also presented, as well as a developed potential model for the Milky Way. An implementation of the backwards restricted integration method is shown, rounding off the basic principles used in the dynamical studies of this thesis. The thesis looks at the orbit of the Sun, and its impact on the Oort cloud comets (Paper IV), showing that there is a clear link between these two dynamical systems. The statistical atypicalness of the orbit of the Sun is questioned (Paper I), concluding that there is some statistical typicalness to the orbit of the Sun, although it is not very significant. This does depend slightly on whether one includes a bar, or not, as a bar has a clear effect on the dynamical features seen in the Solar neighbourhood (Paper III). This method can be used to find the possible properties of a bar. Finally, we look at the effect of a bar on a statistical system in the Milky Way, seeing that there are not only interesting effects depending on the mass and size of the bar, but also how bars can capture disc stars (Paper II).
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
The purpose of this dissertation is to examine the dynamics of the socio-technical system in the field of ageing. The study stems from the notion that the ageing of the population as a powerful megatrend has wide societal effects, and is not just a matter for the social and health sector. The central topic in the study is change: not only the age structures and structures of society are changing, but also at the same time there is constant development, for instance, in technologies, infrastructures and cultural perceptions. The changing concept of innovation has widened the understanding of innovations related to ageing from medical and assistive technological innovations to service and social innovations, as well as systemic innovations at different levels, which means the intertwined and co-evolutionary change in technologies, structures, services and thinking models. By the same token, the perceptions of older people and old age are becoming more multi-faceted: old age is no longer equated to illnesses and decline, but visions of active ageing and a third age have emerged, which are framed by choices, opportunities, resources and consumption in later life. The research task in this study is to open up the processes and mechanisms of change in the field of ageing, which are studied as a complex, multi-level and interrelated socio-technical system. The question is about co-effective elements consisting of macro-level landscape changes, the existing socio-technical regime (the rule system, practices and structures) and bottom-up niche-innovations. Societal transitions do not account for the things inside the regime alone, or for the long-term changes in the landscape, nor for the radical innovations, but for the interplay between all these levels. The research problem is studied through five research articles, which offer micro-level case studies to macro-level phenomenon. Each of the articles focus on different aspects related to ageing and change, and utilise various datasets. The framework of this study leans on the studies of socio-technical systems and multi-level perspective on transitions mainly developed by Frank Geels. Essential factors in transition from one socio-technological regime to another are the co-evolutionary processes between landscape changes, regime level and experimental niches. Landscape level changes, like the ageing of the population, destabilise the regime in the forms of coming pressures. This destabilization offers windows for opportunity to niche-innovations outside or at fringe of the regime, which, through their breakthrough, accelerate the transition process. However, the change is not easy because of various kinds of lock-ins and inertia, which tend to maintain the stability of the regime. In this dissertation, a constructionist approach of society is applied leaning mainly to the ideas of Anthony Giddens’ theory of structuration, with the dual nature of structures. The change is taking place in the interplay between actors and structures: structures shape people’s practices, but at the same time these practices constitute and reproduce social systems. Technology and other material aspects, as part of socio-technical systems, and the use of them, also take part in the structuration process. The findings of the study point out that co-evolutionary and co-effective relationships between economic, cultural, technological and institutional fields, as well as relationships between landscape changes, changes in the local and regime-level practices and rule systems, are a very complex and multi-level dynamic socio-technical phenomenon. At the landscape level of ageing, which creates the pressures and triggers to the regime change, there are three remarkable megatrends: demographic change, changes in the global economy and the development of technologies. These exert pressures to the socio-technical regime, which as a rule system is experiencing changes in the form of new markets and consumer habits, new ways of perceiving ageing, new models of organising the health care and other services and as new ways of considering innovation and innovativeness. There are also inner dynamics in the relationships between these aspects within the regime. These are interrelated and coconstructed: the prevailing perceptions of ageing and innovation, for instance, reflect the ageing policies, innovation policies, societal structures, organising models, technology and scientific discussion, and vice versa. Technology is part of the inner dynamics of the sociotechnological regime. Physical properties of the artefacts set limitations and opportunities with regard to their functions and uses. The use of and discussion about technology, contributes producing and reproducing the perceptions of old age. For societal transition, micro-level changes are also needed, in form of niche-innovations, for instance new services, organisational models or new technologies, Regimes, as stabilitystriven systems, tend to generate incremental innovations, but radically new innovations are generated in experimental niches protected from ‘normal’ market selection. The windows of opportunity for radical novelties may be opened if the circumstances are favourable for instance by tensions in the socio-technical regime affected by landscape level changes. This dissertation indicates that a change is taking place, firstly, in the dynamic interactionbetween levels, as a result of purposive action and governance to some extent. Breaking the inertia and using the window of opportunity for change and innovation offered by dynamics between levels, presupposes the actors’ special capabilities and actions such as dynamic capabilities and distance management. Secondly, the change is taking place the socio-technological negotiations inside the regime: interaction between technological and social, which is embodied in the use of technology. The use of technology includes small-level contextual scripts that also participate in forming broader societal scripts (for instance defining old age at the society level), which in their turn affect the formation of policies for innovation and ageing. Thirdly, the change is taking place by the means of active formation of the multi-actor innovation networks, where the role of distance management is crucial to facilitate the communication between actors coming from different backgrounds as well as to help the niches born outside the regime to utilise the window of opportunity offered by regime destabilisation. This dissertation has both theoretical and practical contributions. This study participates in the discussion of action-oriented view on transition by opening up of the socio-technological, coevolutionary processes of the multi-faceted phenomenon of ageing, which has lacked systematic analyses. The focus of this study, however, is not on the large-scale coordination and governance, but rather on opening up the incremental elements and structuration processes, which contribute to the transition little by little, and which can be affected to. This increases the practical importance of this dissertation, by highlighting the importance of very tiny, everyday elements in the change processes in the long run.
Resumo:
Whenever a spacecraft is launched it is essential that the algorithms in the on-board software systems and at ground control are efficient and reliable over extended periods of time. Geometric numerical integrators, and in particular variational integrators, have both these characteristics. In "Numerics of Spacecraft Dynamics" new numerical integrators are presented and analysed in depth. These algorithms have been designed specifically for the dynamics of spacecraft and artificial satellites in Earth orbits. Full analytical solutions to a class of integrable deformations of the two-body problem in classical mechanics are derived, and a systematic method to compute variational integrators to arbitrary order with a computer algebra system is introduced.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
This Thesis discusses the phenomenology of the dynamics of open quantum systems marked by non-Markovian memory effects. Non-Markovian open quantum systems are the focal point of a flurry of recent research aiming to answer, e.g., the following questions: What is the characteristic trait of non-Markovian dynamical processes that discriminates it from forgetful Markovian dynamics? What is the microscopic origin of memory in quantum dynamics, and how can it be controlled? Does the existence of memory effects open new avenues and enable accomplishments that cannot be achieved with Markovian processes? These questions are addressed in the publications forming the core of this Thesis with case studies of both prototypical and more exotic models of open quantum systems. In the first part of the Thesis several ways of characterizing and quantifying non-Markovian phenomena are introduced. Their differences are then explored using a driven, dissipative qubit model. The second part of the Thesis focuses on the dynamics of a purely dephasing qubit model, which is used to unveil the origin of non-Markovianity for a wide class of dynamical models. The emergence of memory is shown to be strongly intertwined with the structure of the spectral density function, as further demonstrated in a physical realization of the dephasing model using ultracold quantum gases. Finally, as an application of memory effects, it is shown that non- Markovian dynamical processes facilitate a novel phenomenon of timeinvariant discord, where the total quantum correlations of a system are frozen to their initial value. Non-Markovianity can also be exploited in the detection of phase transitions using quantum information probes, as shown using the physically interesting models of the Ising chain in a transverse field and a Coulomb chain undergoing a structural phase transition.
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.
Resumo:
In many engineering applications, compliant piping systems conveying liquids are subjected to inelastic deformations due to severe pressure surges such as plastic tubes in modern water supply transmission lines and metallic pipings in nuclear power plants. In these cases the design of such systems may require an adequate modeling of the interactions between the fluid dynamics and the inelastic structural pipe motions. The reliability of the prediction of fluid-pipe behavior depends mainly on the adequacy of the constitutive equations employed in the analysis. In this paper it is proposed a systematic and general approach to consistently incorporate different kinds of inelastic behaviors of the pipe material in a fluid-structure interaction analysis. The main feature of the constitutive equations considered in this work is that a very simple numerical technique can be used for solving the coupled equations describing the dynamics of the fluid and pipe wall. Numerical examples concerning the analysis of polyethylene and stainless steel pipe networks are presented to illustrate the versatility of the proposed approach.
Resumo:
This paper presents a study on the dynamics of the rattling problem in gearboxes under non-ideal excitation. The subject has being analyzed by a number of authors such as Karagiannis and Pfeiffer (1991), for the ideal excitation case. An interesting model of the same problem by Moon (1992) has been recently used by Souza and Caldas (1999) to detect chaotic behavior. We consider two spur gears with different diameters and gaps between the teeth. Suppose the motion of one gear to be given while the motion of the other is governed by its dynamics. In the ideal case, the driving wheel is supposed to undergo a sinusoidal motion with given constant amplitude and frequency. In this paper, we consider the motion to be a function of the system response and a limited energy source is adopted. Thus an extra degree of freedom is introduced in the problem. The equations of motion are obtained via a Lagrangian approach with some assumed characteristic torque curves. Next, extensive numerical integration is used to detect some interesting geometrical aspects of regular and irregular motions of the system response.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
The main objective of the present study was to design an agricultural robot, which work is based on the generation of the electricity by the solar panel. To achieve the proper operation of the robot according to the assumed working cycle the detailed design of the main equipment was made. By analysing the possible areas of implementation together with developments, the economic forecast was held. As a result a decision about possibility of such device working in agricultural sector was made and the probable topics of the further study were found out.
Virtual Testing of Active Magnetic Bearing Systems based on Design Guidelines given by the Standards
Resumo:
Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.
Resumo:
A system is said to be "instantaneous" when for a given constant input an equilibrium output is obtained after a while. In the meantime, the output is changing from its initial value towards the equilibrium one. This is the transient period of the system and transients are important features of open-respirometry systems. During transients, one cannot compute the input amplitude directly from the output. The existing models (e.g., first or second order dynamics) cannot account for many of the features observed in real open-respirometry systems, such as time lag. Also, these models do not explain what should be expected when a system is speeded up or slowed down. The purpose of the present study was to develop a mechanistic approach to the dynamics of open-respirometry systems, employing basic thermodynamic concepts. It is demonstrated that all the main relevant features of the output dynamics are due to and can be adequately explained by a distribution of apparent velocities within the set of molecules travelling along the system. The importance of the rate at which the molecules leave the sensor is explored for the first time. The study approaches the difference in calibrating a system with a continuous input and with a "unit impulse": the former truly reveals the dynamics of the system while the latter represents the first derivative (in time) of the former and, thus, cannot adequately be employed in the apparent time-constant determination. Also, we demonstrate why the apparent order of the output changes with volume or flow.