958 resultados para Suspension Reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FALCAI MJ, LOUZADA MJQ, DE PAULA FJA, OKUBO R, VOLPON JB. A modified technique of rat tail suspension for longer periods of observation. Aviat Space Environ Med 2012; 83:1176-80. Background: Rat tail suspension is an accepted method to create experimental osteopenia. However, suspension periods longer than 3 wk may cause tail skin sloughing or rat slippage. The hypothesis was that a traction system with skeletal anchorage through one tail vertebra would prolong the suspension time without significant complications. Methods: There were 80 young adult female Wistar rats that were submitted to one of the following interventions: skeletal tail suspension (N = 20), skin tail suspension (N = 20), no intervention (N = 20), and a baseline control (N = 20). All animals were followed up either for 3 (N = 10) or 6 (N = 10) wk. Animals were assessed for clinical signs of stress and tolerance to suspension. The femur evaluation was in terms of mineral density content, mechanical resistance, and histomorphometry. Results/Discussion: All animals reached the 3-wk end point. However, for the 6-wk period, seven animals suspended by the skin traction method were discarded (70%) because of signs of stress and skin sloughing. In contrast, there was one loss in the skeletal suspension group (10%). All suspended animals developed similar osteopenia at 3 wk characterized by decreased bone mineral content, weakened bone resistance, and loss of femoral mass. At 6 wk, all suspended animals had similar osteopenic parameters, but they were not statistically different from those of the rats in the 3-wk groups. Therefore, suspension longer than 3 wk did not increase the bone deterioration in the femur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on results obtained from experiments carried out in an acidogenic anaerobic reactor aiming at the optimization of hydrogen production by altering the degree of back-mixing. It was hypothesized that there is an optimum operating point that maximizes the hydrogen yield. Experiments were performed in a packed-bed bioreactor by covering a broad range of recycle ratios (R) and the optimum point was obtained for an R value of 0.6. In this operating condition the reactor behaved as 8 continuous stirred-tank reactors in series and the maximum yield was 4.22 mol H-2 mol sucrose(-1). Such optimum point was estimated by deriving a polynomial function fitted to experimental data and it was obtained as the conjugation of three factors related to the various degrees of back-mixing applied to the reactor: mass transfer from the bulk liquid to the biocatalyst, liquid-to-gas mass transfer and the kinetic behavior of irreversible reactions in series. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new biomaterial, based on silica organofunctionalized with p-phenylenediamine (p-PDA) and the enzyme peroxidase, was used in the development of an enzymatic solid-phase reactor. The analytical techniques used in the characterization showed that the organic ligand was incorporated into the silica matrix. Thus, the silica modified with p-PDA allowed the incorporation of peroxidase by the electrostatic interaction between the carboxylic groups present in the enzyme molecules and the amino groups attached to the silica. The enzymatic solid-phase reactor was used for chemical oxidation of phenols in 1, 4-benzoquinone that was then detected by chronoamperometry. The system allowed the analysis of hydroquinone with a detection limit of 83.6 nmol L-1. Thus, the new material has potential in the determination of phenolic compounds river water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lepton mixing angle theta(13), the only unknown angle in the standard three-flavor neutrino mixing scheme, is finally measured by the recent reactor and accelerator neutrino experiments. We perform a combined analysis of the data coming from T2K, MINOS, Double Chooz, Daya Bay and RENO experiments and find sin(2)2 theta(13) = 0.096 +/- 0.013(+/- 0.040) at 1 sigma (3 sigma) CL and that the hypothesis theta(13) = 0 is now rejected at a significance level of 7.7 sigma. We also discuss the near future expectation on the precision of the theta(13) determination by using expected data from these ongoing experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the performance of a combined anaerobic-aerobic packed-bed reactor that can be used to treat domestic sewage. Initially, a bench-scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic-aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot-scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench-scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic-aerobic fixed-bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactor was used to study the treatment of acid mine drainage through the biological reduction of sulfate. The reactor was fed with acid mine drainage collected at the Osamu Utsumi uranium mine (Caldas, MG, Brazil) and supplemented with ethanol as an external carbon source. Anaerobic granular sludge originating from a reactor treating poultry slaughterhouse wastewater was used as the inoculum. The reactor's performance was studied according to variations in the chemical oxygen demand (COD)/SO42- ratio, influent dilution and liquid-phase recirculation. The digestion of a dilution of the acid mine drainage resulted in a 46.3% removal of the sulfate and an increase in the effluent pH (COD/SO42- = 0.67). An increase in the COD/SO42- ratio to 1.0 resulted in an 85.6% sulfate reduction. The reduction of sulfate through complete oxidation of the ethanol was the predominant path in the reactor, although the removal of COD was not greater than 68% in any of the operational stages. The replenishment of the liquid phase with tap water positively affected the reactor, whereas the recirculation of treated effluent caused disequilibrium and decreased efficiency. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an alternative explanation for the deficit of nu(e) in Ga solar neutrino calibration experiments and of the (nu) over bar (e) in short-baseline reactor experiments by a model where neutrinos can oscillate into sterile Kaluza-Klein modes that can propagate in compactified submicrometer flat extra dimensions. We have analyzed the results of the gallium radioactive source experiments and 19 reactor experiments with baseline shorter than 100 m, and showed that these data can be fit into this scenario. The values of the lightest neutrino mass and of the size of the largest extra dimension that are compatible with these experiments are mostly not excluded by other neutrino oscillation experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal >97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background How to maintain “gut health” is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. Methods The SHIME® model was used to study the effect of Lactobacillus acidophilus 1014 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2-wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota was monitored. The microbiota was then subjected to a 4-wk treatment period by adding 5 mL of sterile peptone water with L. acidophilus CRL1014 at the concentration of 108 CFU/mL to vessel one (the stomach compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA) and ammonium analyses were carried out for monitoring of the microbial community from the colon compartments. Results A significant increase (p < 0.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed changes in the lactobacilli community from the colon compartments of the SHIME® reactor. The (SCFA) concentration increased (p < 0.01) during the treatment period, due mainly to significant increased levels of acetic, butyric, and propionic acids. However, ammonium concentrations decreased during the same period (p < 0.01). Conclusions This study showed the beneficial influence of L. acidophilus CRL 1014 on microbial metabolism and lactobacilli community composition for improving human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.