907 resultados para Stabilisation of filter
Resumo:
The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and observations are made that reflect both time scales, the EnKF is able to recover both time scales more accurately than optimal interpolation (OI), which uses a static error covariance matrix. For OI it is also found to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a problem that is in part overcome by the EnKF.However, error in themodeled gravity wave parameters can be detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified algorithm or a method for accounting for model error is needed.
Resumo:
Particle filters are fully non-linear data assimilation techniques that aim to represent the probability distribution of the model state given the observations (the posterior) by a number of particles. In high-dimensional geophysical applications the number of particles required by the sequential importance resampling (SIR) particle filter in order to capture the high probability region of the posterior, is too large to make them usable. However particle filters can be formulated using proposal densities, which gives greater freedom in how particles are sampled and allows for a much smaller number of particles. Here a particle filter is presented which uses the proposal density to ensure that all particles end up in the high probability region of the posterior probability density function. This gives rise to the possibility of non-linear data assimilation in large dimensional systems. The particle filter formulation is compared to the optimal proposal density particle filter and the implicit particle filter, both of which also utilise a proposal density. We show that when observations are available every time step, both schemes will be degenerate when the number of independent observations is large, unlike the new scheme. The sensitivity of the new scheme to its parameter values is explored theoretically and demonstrated using the Lorenz (1963) model.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Resumo:
The ring-shedding process in the Agulhas Current is studied using the ensemble Kalman filter to assimilate geosat altimeter data into a two-layer quasigeostrophic ocean model. The properties of the ensemble Kalman filter are further explored with focus on the analysis scheme and the use of gridded data. The Geosat data consist of 10 fields of gridded sea-surface height anomalies separated 10 days apart that are added to a climatic mean field. This corresponds to a huge number of data values, and a data reduction scheme must be applied to increase the efficiency of the analysis procedure. Further, it is illustrated how one can resolve the rank problem occurring when a too large dataset or a small ensemble is used.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Drilling fluid`s contact with the productive zone of horizontal or complex wells can reduce well productivity by fluid invasion in the borehole wall. Salted drilling drill-in fluid containing polymers has often been applied in horizontal or complex petroleum wells in the poorly consolidated sandstone reservoirs of the Campos basin, Rio de Janeiro, Brazil. This fluid usually consists of natural polymers such as starch and xanthan gum, which are deposited as a filter cake on the wellbore wall during the drilling. Therefore, the identification of a lift-off mechanism failure, which can be detachment or blistering and pinholing, will enable formulation improvements. increasing the chances of success during filter cake removal in open hole operations. Likewise, knowledge of drill-in drilling fluid adsorption/desorption onto sand can help understand the filter cake-rock adhesion mechanism and consequently filter cake lift-off mechanism failures. The present study aimed to identify the lift-off failure mechanism for this type of fluid filter cake studying adsorption/desorption onto SiO(2) using solutions of natural polymers, lubricants, besides the fluid itself. Ellipsometry was employed to measure this process. The adsorption/desorption studies showed that the adsorbed layer of drilling fluid onto the walls of the rock pores is made up of clusters of polymers, linked by hydrogen bonds, which results in a force of lower cohesion compared to the electrostatic interaction between silica and polymers. Consequently, it was found that the most probable filter cake failure mechanism is rupture (blistering and pinholing), which results in the formation of ducts within the filter cake. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
SANTANA, André M.; SOUZA, Anderson A. S.; BRITTO, Ricardo S.; ALSINA, Pablo J.; MEDEIROS, Adelardo A. D. Localization of a mobile robot based on odometry and natural landmarks using extended Kalman Filter. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Perforation of inferior vena cava (IVC) by filter struts ranges from 9% to 24%, and clinical sequelae and complications are unpredictable. The aim of this article was to report an unusual case of late complication of IVC filter that caused an IVC wall perforation and penetration of the filter's hooks in the aorta, which was treated by endovascular procedure. Molding strut tip by balloon angioplasty, its accommodation with a bare stent, and its coverage and protection with an endoprosthesis is probably the first technique reported so far in this situation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim. The authors assess a modified Greenfield filter (GF) for the long-term patency, filter tilting and histopathologic alterations of the inferior vena cava (IVC).Methods. Adult sheep (n=7) underwent modified GF placement in the IVC. Cavograms were obtained every 3 months and pulmonary angiography at 12 months. Histopathologic and scanning electron microscopy (SEM) analyses were performed on the IVC explanted at 12 months.Results. Cavograms showed that all IVC were patent at the end of the study. Filter tilting occurred in 2/7 animals and extrusion of struts was not observed. Macroscopic examination at explantation showed minimal venous wall thickening. Microscopic examination showed minimal IVC fibrosis and intimal hyperplasia. SEM showed endothelium on the IVC surface at the filter implantation site and a presumed endothelial layer covering partially or totally the struts. The interface filter-IVC was covered by deposits of leucocytes and platelets. No signs of pulmonary embolism were found in all pulmonary angiograms of both groups.Conclusion. The modified filter presented good biocompatibility, stability and absence of thrombogenicity at 12 months. It presented low tendency to tilting and extrusion of struts. The long-term histopathologic alterations in vena caval wall were minimal and the appearance of the studied filters in the IVC was similar to stents placed in the arterial system.
Resumo:
This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.
Resumo:
This paper presents an improved design methodology for the determination of the parameters used in the classical series-resonant parallel-loaded (SRPL) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some important characteristics of the resonant filter during the dimming operation, such as: range of switching frequency, phase shift, and rms value of the current drained by the resonant filter + fluorescent lamp set. Experimental results are presented in order to validate the analyses developed in this paper. © 2005 IEEE.
Resumo:
This paper discusses the main characteristics and presents a comparative analysis of three synchronization algorithms based respectively, on a Phase-Locked Loop, a Kalman Filter and a Discrete Fourier Transform. It will be described the single and three-phase models of the first two methods and the single-phase model of the third one. Details on how to modify the filtering properties or dynamic response of each algorithm will be discussed in terms of their design parameters. In order to compare the different algorithms, these parameters will be set for maximum filter capability. Then, the dynamic response, during input amplitude and frequency deviations will be observed, as well as during the initialization procedure. So, advantages and disadvantages of all considered algorithms will be discussed. ©2007 IEEE.