958 resultados para Spoelman, Marianne
Autorregulaci??n del aprendizaje en una clase de la Universidad : un enfoque de infusi??n curricular
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
This paper is a curriculum packet for teaching of the westward expansion in the United States for a third grade level.
Resumo:
A series of studies on interpretations of history and their use in political debates. Includes: Beatrice Heuser & Cyril Buffet: ‘Michel and Marianne’ Beatrice Heuser & Cyril Buffet: ‘Of Myths and Men’, Beatrice Heuser & Cyril Buffet: ‘Historical Myths and the Denial of Change’, Beatrice Heuser: ‘Dunkirk, Dien Bien Phu, and Suez, or why France doesn't trust allies and has learned to love the bomb’.
Resumo:
BACKGROUND/AIMS: Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets. METHODS: Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer-experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6-8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors--energy density, protein content (in grams or in % of total energy intake) and glycemic index--on these four adiposity phenotypes. RESULTS: We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = -0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = -0.0433 and rs10888390 (SNP N°3), p = 0.04, β = -0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (p(interaction) = 0.01, OR = 1.0526)--the risk of being a weight gainer increased with the percentage of proteins contained in the diet. CONCLUSION: CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.
Resumo:
Although FTO is an established obesity-susceptibility locus, it remains unknown whether it influences weight change in adult life and whether diet attenuates this association. Therefore, we investigated the association of FTO-rs9939609 with changes in weight and waist circumference (WC) during 6.8 years follow-up in a large-scale prospective study and examined whether these associations were modified by dietary energy percentage from fat, protein, carbohydrate, or glycemic index (GI). This study comprised data from five countries of European Prospective Investigation into Cancer and Nutrition (EPIC) and was designed as a case-cohort study for weight gain. Analyses included 11,091 individuals, of whom 5,584 were cases (age (SD), 47.6 (7.5) years), defined as those with the greatest unexplained annual weight gain during follow-up and 5,507 were noncases (48.0 (7.3) years), who were compared in our case-noncase (CNC) analyses. Furthermore, 6,566 individuals (47.9 (7.3) years) selected from the total sample (all noncases and 1,059 cases) formed the random subcohort (RSC), used for continuous trait analyses. Interactions were tested by including interaction terms in the models. In the RSC-analyses, FTO-rs9939609 was associated with BMI (β (SE), 0.17 (0.08) kg·m(-2)/allele; P = 0.034) and WC (0.47 (0.21) cm/allele; P = 0.026) at baseline, but not with weight change (5.55 (12.5) g·year(-1)/allele; P = 0.66) during follow up. In the CNC-analysis, FTO-rs9939609 was associated with increased risk of being a weight-gainer (OR: 1.1; P = 0.045). We observed no interaction between FTO-rs9939609 and dietary fat, protein and carbohydrate, and GI on BMI and WC at baseline or on change in weight and WC. FTO-rs9939609 is associated with BMI and WC at baseline, but association with weight gain is weak and only observed for extreme gain. Dietary factors did not influence the associations.
Resumo:
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.
Resumo:
The application of metabolomics in multi-centre studies is increasing. The aim of the present study was to assess the effects of geographical location on the metabolic profiles of individuals with the metabolic syndrome. Blood and urine samples were collected from 219 adults from seven European centres participating in the LIPGENE project (Diet, genomics and the metabolic syndrome: an integrated nutrition, agro-food, social and economic analysis). Nutrient intakes, BMI, waist:hip ratio, blood pressure, and plasma glucose, insulin and blood lipid levels were assessed. Plasma fatty acid levels and urine were assessed using a metabolomic technique. The separation of three European geographical groups (NW, northwest; NE, northeast; SW, southwest) was identified using partial least-squares discriminant analysis models for urine (R 2 X: 0•33, Q 2: 0•39) and plasma fatty acid (R 2 X: 0•32, Q 2: 0•60) data. The NW group was characterised by higher levels of urinary hippurate and N-methylnicotinate. The NE group was characterised by higher levels of urinary creatine and citrate and plasma EPA (20 : 5 n-3). The SW group was characterised by higher levels of urinary trimethylamine oxide and lower levels of plasma EPA. The indicators of metabolic health appeared to be consistent across the groups. The SW group had higher intakes of total fat and MUFA compared with both the NW and NE groups (P≤ 0•001). The NE group had higher intakes of fibre and n-3 and n-6 fatty acids compared with both the NW and SW groups (all P< 0•001). It is likely that differences in dietary intakes contributed to the separation of the three groups. Evaluation of geographical factors including diet should be considered in the interpretation of metabolomic data from multi-centre studies.
Resumo:
Background: Dietary assessment methods are important tools for nutrition research. Online dietary assessment tools have the potential to become invaluable methods of assessing dietary intake because, compared with traditional methods, they have many advantages including the automatic storage of input data and the immediate generation of nutritional outputs. Objective: The aim of this study was to develop an online food frequency questionnaire (FFQ) for dietary data collection in the “Food4Me” study and to compare this with the validated European Prospective Investigation of Cancer (EPIC) Norfolk printed FFQ. Methods: The Food4Me FFQ used in this analysis was developed to consist of 157 food items. Standardized color photographs were incorporated in the development of the Food4Me FFQ to facilitate accurate quantification of the portion size of each food item. Participants were recruited in two centers (Dublin, Ireland and Reading, United Kingdom) and each received the online Food4Me FFQ and the printed EPIC-Norfolk FFQ in random order. Participants completed the Food4Me FFQ online and, for most food items, participants were requested to choose their usual serving size among seven possibilities from a range of portion size pictures. The level of agreement between the two methods was evaluated for both nutrient and food group intakes using the Bland and Altman method and classification into quartiles of daily intake. Correlations were calculated for nutrient and food group intakes. Results: A total of 113 participants were recruited with a mean age of 30 (SD 10) years (40.7% male, 46/113; 59.3%, 67/113 female). Cross-classification into exact plus adjacent quartiles ranged from 77% to 97% at the nutrient level and 77% to 99% at the food group level. Agreement at the nutrient level was highest for alcohol (97%) and lowest for percent energy from polyunsaturated fatty acids (77%). Crude unadjusted correlations for nutrients ranged between .43 and .86. Agreement at the food group level was highest for “other fruits” (eg, apples, pears, oranges) and lowest for “cakes, pastries, and buns”. For food groups, correlations ranged between .41 and .90. Conclusions: The results demonstrate that the online Food4Me FFQ has good agreement with the validated printed EPIC-Norfolk FFQ for assessing both nutrient and food group intakes, rendering it a useful tool for ranking individuals based on nutrient and food group intakes.
Resumo:
Background: Advances in nutritional assessment are continuing to embrace developments in computer technology. The online Food4Me food frequency questionnaire (FFQ) was created as an electronic system for the collection of nutrient intake data. To ensure its accuracy in assessing both nutrient and food group intake, further validation against data obtained using a reliable, but independent, instrument and assessment of its reproducibility are required. Objective: The aim was to assess the reproducibility and validity of the Food4Me FFQ against a 4-day weighed food record (WFR). Methods: Reproducibility of the Food4Me FFQ was assessed using test-retest methodology by asking participants to complete the FFQ on 2 occasions 4 weeks apart. To assess the validity of the Food4Me FFQ against the 4-day WFR, half the participants were also asked to complete a 4-day WFR 1 week after the first administration of the Food4Me FFQ. Level of agreement between nutrient and food group intakes estimated by the repeated Food4Me FFQ and the Food4Me FFQ and 4-day WFR were evaluated using Bland-Altman methodology and classification into quartiles of daily intake. Crude unadjusted correlation coefficients were also calculated for nutrient and food group intakes. Results: In total, 100 people participated in the assessment of reproducibility (mean age 32, SD 12 years), and 49 of these (mean age 27, SD 8 years) also took part in the assessment of validity. Crude unadjusted correlations for repeated Food4Me FFQ ranged from .65 (vitamin D) to .90 (alcohol). The mean cross-classification into “exact agreement plus adjacent” was 92% for both nutrient and food group intakes, and Bland-Altman plots showed good agreement for energy-adjusted macronutrient intakes. Agreement between the Food4Me FFQ and 4-day WFR varied, with crude unadjusted correlations ranging from .23 (vitamin D) to .65 (protein, % total energy) for nutrient intakes and .11 (soups, sauces and miscellaneous foods) to .73 (yogurts) for food group intake. The mean cross-classification into “exact agreement plus adjacent” was 80% and 78% for nutrient and food group intake, respectively. There were no significant differences between energy intakes estimated using the Food4Me FFQ and 4-day WFR, and Bland-Altman plots showed good agreement for both energy and energy-controlled nutrient intakes. Conclusions: The results demonstrate that the online Food4Me FFQ is reproducible for assessing nutrient and food group intake and has moderate agreement with the 4-day WFR for assessing energy and energy-adjusted nutrient intakes. The Food4Me FFQ is a suitable online tool for assessing dietary intake in healthy adults.