946 resultados para Spectral graph theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure and spectral properties of hexagonal NiS have been studied in the high temperature paramagnetic phase and low temperature anti-ferromagnetic phase. The calculations have been performed using charge self-consistent density-functional theory in local density approximation combined with dynamical mean-field theory (LDA+DMFT). The photoemission spectra (PES) and optical properties have been computed and compared with the experimental data. Our results show that the dynamical correlation effects are important to understand the spectral and optical properties of NiS. These effects have been analyzed in detail by means of the computed real and imaginary part of the self-energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jansen mechanism is a one degree-of-freedom, planar, 12-link, leg mechanism that can be used in mobile robotic applications and in gait analysis. This paper presents the kinematics and dynamics of the Jansen leg mechanism. The forward kinematics, accomplished using circle intersection method, determines the trajectories of various points on the mechanism in the chassis (stationary link) reference frame. From the foot point trajectory, the step length is shown to vary linearly while step height varies non-linearly with change in crank radius. A dynamic model for the Jansen leg mechanism is proposed using bond graph approach with modulated multiport transformers. For given ground reaction force pattern and crank angular speed, this model helps determine the motor torque profile as well as the link and joint stresses. The model can therefore be used to rate the actuator torque and in design of the hardware and controller for such a system. The kinematics of the mechanism can also be obtained from this dynamic model. The proposed model is thus a useful tool for analysis and design of systems based on the Jansen leg mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.

This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.

Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave-theoretical analysis of acoustic and elastic waves refracted by a spherical boundary across which both velocity and density increase abruptly and thence either increase or decrease continuously with depth is formulated in terms of the general problem of waves generated at a steady point source and scattered by a radially heterogeneous spherical body. A displacement potential representation is used for the elastic problem that results in high frequency decoupling of P-SV motion in a spherically symmetric, radially heterogeneous medium. Through the application of an earth-flattening transformation on the radial solution and the Watson transform on the sum over eigenfunctions, the solution to the spherical problem for high frequencies is expressed as a Weyl integral for the corresponding half-space problem in which the effect of boundary curvature maps into an effective positive velocity gradient. The results of both analytical and numerical evaluation of this integral can be summarized as follows for body waves in the crust and upper mantle:

1) In the special case of a critical velocity gradient (a gradient equal and opposite to the effective curvature gradient), the critically refracted wave reduces to the classical head wave for flat, homogeneous layers.

2) For gradients more negative than critical, the amplitude of the critically refracted wave decays more rapidly with distance than the classical head wave.

3) For positive, null, and gradients less negative than critical, the amplitude of the critically refracted wave decays less rapidly with distance than the classical head wave, and at sufficiently large distances, the refracted wave can be adequately described in terms of ray-theoretical diving waves. At intermediate distances from the critical point, the spectral amplitude of the refracted wave is scalloped due to multiple diving wave interference.

These theoretical results applied to published amplitude data for P-waves refracted by the major crustal and upper mantle horizons (the Pg, P*, and Pn travel-time branches) suggest that the 'granitic' upper crust, the 'basaltic' lower crust, and the mantle lid all have negative or near-critical velocity gradients in the tectonically active western United States. On the other hand, the corresponding horizons in the stable eastern United States appear to have null or slightly positive velocity gradients. The distribution of negative and positive velocity gradients correlates closely with high heat flow in tectonic regions and normal heat flow in stable regions. The velocity gradients inferred from the amplitude data are generally consistent with those inferred from ultrasonic measurements of the effects of temperature and pressure on crustal and mantle rocks and probable geothermal gradients. A notable exception is the strong positive velocity gradient in the mantle lid beneath the eastern United States (2 x 10-3 sec-1), which appears to require a compositional gradient to counter the effect of even a small geothermal gradient.

New seismic-refraction data were recorded along a 800 km profile extending due south from the Canadian border across the Columbia Plateau into eastern Oregon. The source for the seismic waves was a series of 20 high-energy chemical explosions detonated by the Canadian government in Greenbush Lake, British Columbia. The first arrivals recorded along this profile are on the Pn travel-time branch. In northern Washington and central Oregon their travel time is described by T = Δ/8.0 + 7.7 sec, but in the Columbia Plateau the Pn arrivals are as much as 0.9 sec early with respect to this line. An interpretation of these Pn arrivals together with later crustal arrivals suggest that the crust under the Columbia Plateau is thinner by about 10 km and has a higher average P-wave velocity than the 35-km-thick, 62-km/sec crust under the granitic-metamorphic terrain of northern Washington. A tentative interpretation of later arrivals recorded beyond 500 km from the shots suggests that a thin 8.4-km/sec horizon may be present in the upper mantle beneath the Columbia Plateau and that this horizon may form the lid to a pronounced low-velocity zone extending to a depth of about 140 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absorption and emission spectral properties of GdVO4 single crystal doped with Ho3+ ions were investigated at room temperature. Polarized absorption cross section is calculated in the range of 400-2200nm. Results were analyzed and parameters were calculated based on Judd-Ofelt theory, the emission spectrum shows that the emission intensity around the wavelength of 546 nm associated with transition S-5(2) -> I-5(8) is much stronger than other bands in the observed range and potentially enable the green light output around this emission band in this crystal. (c) 2006 Elsevier B.V. All rights reserved.