934 resultados para Sounds(waterways)
Resumo:
As a component of a three-year cooperative effort of the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration, surficial sediment samples from 100 locations in southern Puget Sound were collected in 1999 to determine their relative quality based on measures of toxicity, chemical contamination, and benthic infaunal assemblage structure. The survey encompassed an area of approximately 858 km2, ranging from East and Colvos Passages south to Oakland Bay, and including Hood Canal. Toxic responses were most severe in some of the industrialized waterways of Tacoma’s Commencement Bay. Other industrialized harbors in which sediments induced toxic responses on smaller scales included the Port of Olympia, Oakland Bay at Shelton, Gig Harbor, Port Ludlow, and Port Gamble. Based on the methods selected for this survey, the spatial extent of toxicity for the southern Puget Sound survey area was 0% of the total survey area for amphipod survival, 5.7% for urchin fertilization, 0.2% for microbial bioluminescence, and 5- 38% with the cytochrome P450 HRGS assay. Measurements of trace metals, PAHs, PCBs, chlorinated pesticides, other organic chemicals, and other characteristics of the sediments, indicated that 20 of the 100 samples collected had one or more chemical concentrations that exceeded applicable, effects-based sediment guidelines and/or Washington State standards. Chemical contamination was highest in eight samples collected in or near the industrialized waterways of Commencement Bay. Samples from the Thea Foss and Middle Waterways were primarily contaminated with a mixture of PAHs and trace metals, whereas those from Hylebos Waterway were contaminated with chlorinated organic hydrocarbons. The remaining 12 samples with elevated chemical concentrations primarily had high levels of other chemicals, including bis(2-ethylhexyl) phthalate, benzoic acid, benzyl alcohol, and phenol. The characteristics of benthic infaunal assemblages in south Puget Sound differed considerably among locations and habitat types throughout the study area. In general, many of the small embayments and inlets throughout the study area had infaunal assemblages with relatively low total abundance, taxa richness, evenness, and dominance values, although total abundance values were very high in some cases, typically due to high abundance of one organism such as the polychaete Aphelochaeta sp. N1. The majority of the samples collected from passages, outer embayments, and larger bodies of water tended to have infaunal assemblages with higher total abundance, taxa richness, evenness, and dominance values. Two samples collected in the Port of Olympia near a superfund cleanup site had no living organisms in them. A weight-of-evidence approach used to simultaneously examine all three “sediment quality triad” parameters, identified 11 stations (representing 4.4 km2, 0.5% of the total study area) with sediment toxicity, chemical contamination, and altered benthos (i.e., degraded sediment quality), 36 stations (493.5 km2, 57.5% total study area) with no toxicity or chemical contamination (i.e., high sediment quality), 35 stations (274.1 km2, 32.0% total study area) with one impaired sediment triad parameter (i.e., intermediate/high sediment quality), and 18 stations (85.7km2, 10.0% total study area) with two impaired sediment parameters (i.e., intermediate/degraded quality sediments). Generally, upon comparison, the number of stations with degraded sediments based upon the sediment quality triad of data was slightly greater in the central Puget Sound than in the northern and southern Puget Sound study areas, with the percent of the total study area degraded in each region decreasing from central to north to south (2.8, 1.3 and 0.5%, respectively). Overall, the sediments collected in Puget Sound during the combined 1997-1999 surveys were among the least contaminated relative to other marine bays and estuaries studied by NOAA using equivalent methods. (PDF contains 351 pages)
Resumo:
This report is the final product of a two-year study conducted for the Office, Chief of Engineers, by the Moss Landing Marine Laboratories, Moss Landing, California, under Contract No. DACW39-74-C-OI51 with the Environmental Effects Laboratory (EEL), U. S. Army Engineer Waterways Experiment Station (WES), Yicksburg, Mississippi. (PDF contains 192 pages)
Resumo:
Profit maximization in fishery protects cod of western Baltic Sea against overfishing – Only a theoretical approach? The frame for the management of fish stocks politically given contains – apart from ecological and social goals – also an economic goal, which is considered here in particular. From the point of view of fishery enterprises the main management goal for the exploitation of fish stocks is the maximization of profit. There are models for the yield optimization since long time. They are mainly used so far to optimize fishing mortality. Here the Beverton and Holt yield model was used. Apart from the optimization of fishing effort the model was used to optimize age of first capture and thus mesh opening. Starting point of the considerations is a given age group of a fish stock. If this age group is completely fished the yield obtained from this age group is maximized. The investigations show that the term overfishing is not exclusively linked as frequently assumed with a too large fishing mortality, but likewise with a mismatch of the mesh opening. For the calculated example Baltic cod data are used. At present the cod is caught far from reaching its mass optimum. Therefore, the profit of fishery enterprises can in the long term be considerably increased by the optimization of the mesh opening. During the conversion from the state of the art to fishing with optimised mesh sizes, however, a loss of profit has to be expected. The title of the paper sounds provocative. However, the stock of the Baltic Sea cod is better protected by a long-term maximum-profit oriented exploitation than by the precautionary approach applied now.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
This profile covers life history and environmental requirements of both alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis), since their distribution is overlapping and their morphology, ecological role, and environmental requirements are similar. The alewife is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life cycle stage, from Newfoundland (Winters et al. 1973) to Soutn Carolina (Berry 1964). Landlocked populations are i n the Great Lakes, Finger Lakes, and many other freshwater lakes (Bigelow and Sch roeder 1953; Scott and Crossman 1973). The blueback herring is an anadromous species found in riverine, estuarine, and Atlantic coastal habitats, depending on life stage cycle, from Nova Scotia to the St. Johns River, Florida (Hildebrand 1963)