891 resultados para SnO2-TiO2
Resumo:
Transmission and scanning electron microscopy techniques were used to study the heterogeneities found in the microstructure of (SnO2Co3O4Nb2O5Fe2O3)-Co-.-Nb-.-Fe-. and (SnO2ZnONb2O5FC2O3)-Zn-.-Nb-.-F-. varistors. Second phases encountered both inside the grains and ingrain boundary regions were identified using energy dispersive spectrometry and electron diffraction patterns. Through the electrical characterisation, the presence of iron oxide among the additives was determined to highlight the non-linear properties of the specimens. A discussion on the influence of second phases on the non-linear features of these systems is also addressed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
High non-linear J x E electrical characteristic (alpha=41) were obtained in the Nb2O5 and Cr2O3 doped CoO highly densified SnO2 ceramics. X-ray diffraction analysis showed that these ceramics are apparently single phase. Electrical properties and microstructure are highly dependent on the Cr2O3 concentration and on the sintering temperature. Excess of Cr2O3 leads to porous ceramics destroying the material's electrical characteristics probably due to precipitation of second phase of CoCr2O4 Dopant segregation and/or solid solution formation at the grain boundaries can be responsible for the formation of the electrical barriers which originate the varistor behaviour. (C) 1998 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.
Resumo:
SnO2 based ceramics doped with 1.0 mol% ZnO, 1.0 mol% CoO, 0.1 mol% WO3 and 0.05 mol% Cr2O3 show varistor behavior with nonlinear coefficient alpha = 33, breakdown electric field E-B = 12.5 kV/cm, leakage current I = 0.63 mA/cm(2) and average grain size of 1.52 mu m. Experimental evidence shows that the addition of Cr2O3 improves the nonlinear properties of the samples significantly, the impedance data, represented by means of Nyquist diagrams, show a dramatic increase in the resistivity for the samples doped with Cr2O3. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The presence of tin in the network of silicate glasses produces changes in several of their physico-chemical properties. Glasses with the composition (mol%) 22Na(2)O (.) 8CaO (.) 70SiO(2) containing up to 5 wt% of SnO2 were analyzed under several experimental techniques. Dilatometric measurements showed an increase of the glass transition temperature with increasing tin content, while the average thermal expansion coefficient is reduced. Vickers microhardness, density, and refractive index also increase with the tin content. Diffuse reflectance spectra in the infrared (DRIFT) showed that the presence of tin, even at low concentrations, is responsible for some structural changes since there is an increase of the bridging oxygen concentration. The doped glasses present a brown color and optical absorption spectra measurements are interpreted as being due to precipitation of tin in the form of colloidal particles during cooling of the melted glass. In the Na+ <-> K+ ion exchange process the presence of tin in the glass network hinders the diffusion of these ions. The diffusion coefficients of those ions were calculated by the Boltzmann-Matano technique, after concentration profiles obtained by EDS measurements. All results obtained present evidences that Sn4+ cation acts as a glass network former. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An MNDO study has been carried out to analyze the decomposition process of the ethanol molecule on a SnO2 surface. A (SnO2)(7) (110) model has been selected to represent the surface. The decomposition process has been monitored by selection of a hydrogen-alpha-carbon distance of the ethanol molecule as reaction coordinate, This minimum energy pro file shows a maximum of 186 kJ mol(-1), and in the transition state there is a transfer of hydrogen-alpha-carbon to the SnO2 surface. There is also the interaction between the alcohol hydroxyls and the two oxygens of the oxide.
Resumo:
SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The work reported here consisted of a study of the sensitivity of the nonlinear electrical properties of dense SnO2. CoO ceramic systems to low concentrations of La2O3, sintering temperature and cooling rates. The nonlinear electrical properties of these systems were found to increase with decreasing cooling rates, a behavior attributed to the CoO solid state reactions at temperatures below 1000 degreesC. Post-annealing treatment in N-2-rich atmospheres strongly decreases the non-ohmic behavior of SnO2. CoO ceramic systems. However, this behavior may be restored through thermal treatment in an O-2-rich atmosphere. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The influence of La2O3, Pr2O3 and CeO2 on a new class of polycrystalline ceramics with nonlinear properties based on SnO2, was investigated. La2O3 and Pr2O3 were found to precipitate at the grain boundary region, causing a considerable increase in the nonlinear behavior. It was found that CeO2 forms a solid solution in the bulk but. unlike La2O3 and Pr2O3, it does not increase the nonlinear behavior. A higher nonlinear coefficient of similar to80 was obtained for La2O3-doped SnO2-based systems. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Photoluminescence (PL) at room temperature has been achieved in amorphous thin films and powders of the TiO2-PbO system. They were prepared by the polymeric precursor method with [PbO]/[TiO2] molar ratios ranging from 0.0 to 1.0. The energy position of maximum PL emission and the PL intensity showed dependence on Pb concentration. The Pb addition suggests an increase in the number of nonbridging oxygens (NBO) in the amorphous TiO2 network. These results support the relationship between photoluminescence and structure in TiO2-based amorphous materials.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
This paper discuss the qualitative use of electrostatic force microscopy to study the grain boundary active potential barrier present in dense SnO2-based polycrystalline semiconductors. The effect of heat treatment under rich- and poor-oxygen atmospheres was evaluated while especially considering the number of active barriers at grain boundary regions. The results show that the number of active barriers decrease after heat treatment in an oxygen-poor atmosphere and increase after heat treatment in oxygen-rich atmospheres. The observed effect was explained by considering the presence of oxidized transition metal elements segregated at grain boundary regions which leads to the p-type character of this region, in agreement with the atomic barrier formation mechanism in metal oxide varistor systems.
Resumo:
The effect of Sb doping in SnO2 thin films prepared by the sol-gel dip-coating (SGDC) process is investigated. Electronic and structural properties are evaluated through synchrotron radiation measurements by EXAFS and XANES. These data indicate that antimony is in the oxidation state W, and replaces tin atoms (Sn4+), at a grain surface site. Although the substitution yields net free carrier concentration, the electrical conductivity is increased only slightly, because it is reduced by the high grain boundary scattering. The overall picture leads to a shortening of the grain boundary potential, where oxygen vacancies compensate for oxygen adsorbed species, decreasing the trapped charge at grain boundary. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes particle aggregation process during gelation of SnO2 hydrosols. The effect of the concentration of SnO2 colloidal particles on the kinetics of gelation of hydrosols containing PVA (poly(vinyl alcohol)) was analysed by dynamic rheological measurements. The complex viscosity and the storage and loss moduli have been measured during the sol-gel transition and the results correlated to mass fractal growth, nearly linear growth models, and scalar percolation theory. The analysis of the experimental results shows that a linear aggregation occurs in the initial step of the gelation followed by a fractal growth to form a three-dimensional network. Near the gel point this physical gel exhibits the typical scaling expected from an electrical percolation analogy. (C) 1999 Elsevier B.V. B.V. All rights reserved.