959 resultados para Smart Vending Machine, Automation, Programmable Logic Controllers, Creativity, Innovation
Resumo:
In this paper a surgical robotic device for cochlear implantation surgery is described that is able to discriminate tissue interfaces and other controlling parameters ahead of a drill tip. The advantage in surgery is that tissues at interfaces can be preserved. The smart tool is able to control interaction with respect to the flexing tissue to avoid penetration control the extent of protrusion with respect to the real-time position of the tissue. To interpret drilling conditions, and conditions leading up to breakthrough at a tissue interface, the sensing scheme used enables discrimination between the variety of conditions posed in the drilling environment. The result is a robust fully autonomous system able to respond to tissue type, behaviour and deflection in real-time. The paper describes the robotic tool that has been designed to be used in the surgical environment where it has been used in the operating room.
Resumo:
While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.
In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.
By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.
Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.
Resumo:
Heating, ventilation, air conditioning (HVAC) systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. We present an approach to occupant location prediction based on association rule mining, allowing prediction based on historical occupant locations. Association rule mining is a machine learning technique designed to find any correlations which exist in a given dataset. Occupant location datasets have a number of properties which differentiate them from the market basket datasets that association rule mining was originally designed for. This thesis adapts the approach to suit such datasets, focusing the rule mining process on patterns which are useful for location prediction. This approach, named OccApriori, allows for the prediction of occupants’ next locations as well as their locations further in the future, and can take into account any available data, for example the day of the week, the recent movements of the occupant, and timetable data. By integrating an existing extension of association rule mining into the approach, it is able to make predictions based on general classes of locations as well as specific locations.
Resumo:
The volume of Audiovisual Translation (AVT) is increasing to meet the rising demand for data that needs to be accessible around the world. Machine Translation (MT) is one of the most innovative technologies to be deployed in the field of translation, but it is still too early to predict how it can support the creativity and productivity of professional translators in the future. Currently, MT is more widely used in (non-AV) text translation than in AVT. In this article, we discuss MT technology and demonstrate why its use in AVT scenarios is particularly challenging. We also present some potentially useful methods and tools for measuring MT quality that have been developed primarily for text translation. The ultimate objective is to bridge the gap between the tech-savvy AVT community, on the one hand, and researchers and developers in the field of high-quality MT, on the other.
Resumo:
Cognitive radio (CR) is fast emerging as a promising technology that can meet the machine-to machine (M2M) communication requirements for spectrum utilization and power control for large number of machines/devices expected to be connected to the Internet-of Things (IoT). Power control in CR as a secondary user can been modelled as a non-cooperative game cost function to quantify and reduce its effects of interference while occupying the same spectrum as primary user without adversely affecting the required quality of service (QoS) in the network. In this paper a power loss exponent that factors in diverse operating environments for IoT is employed in the non-cooperative game cost function to quantify the required power of transmission in the network. The approach would enable various CRs to transmit with lesser power thereby saving battery consumption or increasing the number of secondary users thereby optimizing the network resources efficiently.
Resumo:
International audience
Resumo:
Due to the growth of design size and complexity, design verification is an important aspect of the Logic Circuit development process. The purpose of verification is to validate that the design meets the system requirements and specification. This is done by either functional or formal verification. The most popular approach to functional verification is the use of simulation based techniques. Using models to replicate the behaviour of an actual system is called simulation. In this thesis, a software/data structure architecture without explicit locks is proposed to accelerate logic gate circuit simulation. We call thus system ZSIM. The ZSIM software architecture simulator targets low cost SIMD multi-core machines. Its performance is evaluated on the Intel Xeon Phi and 2 other machines (Intel Xeon and AMD Opteron). The aim of these experiments is to: • Verify that the data structure used allows SIMD acceleration, particularly on machines with gather instructions ( section 5.3.1). • Verify that, on sufficiently large circuits, substantial gains could be made from multicore parallelism ( section 5.3.2 ). • Show that a simulator using this approach out-performs an existing commercial simulator on a standard workstation ( section 5.3.3 ). • Show that the performance on a cheap Xeon Phi card is competitive with results reported elsewhere on much more expensive super-computers ( section 5.3.5 ). To evaluate the ZSIM, two types of test circuits were used: 1. Circuits from the IWLS benchmark suit [1] which allow direct comparison with other published studies of parallel simulators.2. Circuits generated by a parametrised circuit synthesizer. The synthesizer used an algorithm that has been shown to generate circuits that are statistically representative of real logic circuits. The synthesizer allowed testing of a range of very large circuits, larger than the ones for which it was possible to obtain open source files. The experimental results show that with SIMD acceleration and multicore, ZSIM gained a peak parallelisation factor of 300 on Intel Xeon Phi and 11 on Intel Xeon. With only SIMD enabled, ZSIM achieved a maximum parallelistion gain of 10 on Intel Xeon Phi and 4 on Intel Xeon. Furthermore, it was shown that this software architecture simulator running on a SIMD machine is much faster than, and can handle much bigger circuits than a widely used commercial simulator (Xilinx) running on a workstation. The performance achieved by ZSIM was also compared with similar pre-existing work on logic simulation targeting GPUs and supercomputers. It was shown that ZSIM simulator running on a Xeon Phi machine gives comparable simulation performance to the IBM Blue Gene supercomputer at very much lower cost. The experimental results have shown that the Xeon Phi is competitive with simulation on GPUs and allows the handling of much larger circuits than have been reported for GPU simulation. When targeting Xeon Phi architecture, the automatic cache management of the Xeon Phi, handles and manages the on-chip local store without any explicit mention of the local store being made in the architecture of the simulator itself. However, targeting GPUs, explicit cache management in program increases the complexity of the software architecture. Furthermore, one of the strongest points of the ZSIM simulator is its portability. Note that the same code was tested on both AMD and Xeon Phi machines. The same architecture that efficiently performs on Xeon Phi, was ported into a 64 core NUMA AMD Opteron. To conclude, the two main achievements are restated as following: The primary achievement of this work was proving that the ZSIM architecture was faster than previously published logic simulators on low cost platforms. The secondary achievement was the development of a synthetic testing suite that went beyond the scale range that was previously publicly available, based on prior work that showed the synthesis technique is valid.
Resumo:
Home Automation holds the potential of realizing cost savings for end users while reducing the carbon footprint of domestic energy consumption. Yet, adoption is still very low. High cost of vendor-supplied home automation systems is a major prohibiting factor. Open source systems such as FHEM, Domoticz, OpenHAB etc. are a cheaper alternative and can drive the adoption of home automation. Moreover, they have the advantage of not being limited to a single vendor or communication technology which gives end users flexibility in the choice of devices to include in their installation. However, interaction with devices having diverse communication technologies can be inconvenient for users thus limiting the utility they derive from it. For application developers, creating applications which interact with the several technologies in the home automation systems is not a consistent process. Hence, there is the need for a common description mechanism that makes interaction smooth for end users and which enables application developers to make home automation applications in a consistent and uniform way. This thesis proposes such a description mechanism within the context of an open source home automation system – FHEM, together with a system concept for its application. A mobile application was developed as a proof of concept of the proposed description mechanism and the results of the implementation are reflected upon.
Resumo:
Manufacturing companies have passed from selling uniquely tangible products to adopting a service-oriented approach to generate steady and continuous revenue streams. Nowadays, equipment and machine manufacturers possess technologies to track and analyze product-related data for obtaining relevant information from customers’ use towards the product after it is sold. The Internet of Things on Industrial environments will allow manufacturers to leverage lifecycle product traceability for innovating towards an information-driven services approach, commonly referred as “Smart Services”, for achieving improvements in support, maintenance and usage processes. The aim of this study is to conduct a literature review and empirical analysis to present a framework that describes a customer-oriented approach for developing information-driven services leveraged by the Internet of Things in manufacturing companies. The empirical study employed tools for the assessment of customer needs for analyzing the case company in terms of information requirements and digital needs. The literature review supported the empirical analysis with a deep research on product lifecycle traceability and digitalization of product-related services within manufacturing value chains. As well as the role of simulation-based technologies on supporting the “Smart Service” development process. The results obtained from the case company analysis show that the customers mainly demand information that allow them to monitor machine conditions, machine behavior on different geographical conditions, machine-implement interactions, and resource and energy consumption. Put simply, information outputs that allow them to increase machine productivity for maximizing yields, save time and optimize resources in the most sustainable way. Based on customer needs assessment, this study presents a framework to describe the initial phases of a “Smart Service” development process, considering the requirements of Smart Engineering methodologies.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
Smart contracts are the most advanced blockchain applications. They can also be used in the contractual domain for the encoding and automatic execution of contract terms. Smart contracts already existed before the blockchain, but they take advantage of the characteristics of that technology. Namely, the decentralised and immutable characters of the blockchain determine that no single contracting party can control, modify, or interrupt the execution of smart contracts. As every new phenomenon, blockchain-based smart contracts have attracted the attention of institutions. For example, in its Resolution of 3 October 2018 on distributed ledger technologies and blockchain, the European Parliament has stressed the need to undertake an in-depth assessment of the legal implications,starting from the analysis of existing legal frameworks. Indeed, the present research thesis aims to verify how blockchain-based smart contracts fit into contract law. To this end, the analysis starts from the most discussed and relevant aspects and develops further considerations. Before that, it provides a detailed description and clarifications about the characteristics, the functioning, and the development of the technology, which is an essential starting point for a high-level quality legal analysis. It takes into considerations already existing rules concerning the use of technology in the life cycle of contracts, from vending machines to computable contracts, and verifies its applicability to blockchain-based smart contracts. The work does not limit to consider the mere technology, but some concrete scenarios of adoption of blockchain-based smart contracts in the contractual domain. Starting from the latter, it focuses on the implications of blockchain-based smart contracts on contract formation, contract performance, and applicable law and jurisdiction.
Resumo:
Network monitoring is of paramount importance for effective network management: it allows to constantly observe the network’s behavior to ensure it is working as intended and can trigger both automated and manual remediation procedures in case of failures and anomalies. The concept of SDN decouples the control logic from legacy network infrastructure to perform centralized control on multiple switches in the network, and in this context, the responsibility of switches is only to forward packets according to the flow control instructions provided by controller. However, as current SDN switches only expose simple per-port and per-flow counters, the controller has to do almost all the processing to determine the network state, which causes significant communication overhead and excessive latency for monitoring purposes. The absence of programmability in the data plane of SDN prompted the advent of programmable switches, which allow developers to customize the data-plane pipeline and implement novel programs operating directly in the switches. This means that we can offload certain monitoring tasks to programmable data planes, to perform fine-grained monitoring even at very high packet processing speeds. Given the central importance of network monitoring exploiting programmable data planes, the goal of this thesis is to enable a wide range of monitoring tasks in programmable switches, with a specific focus on the ones equipped with programmable ASICs. Indeed, most network monitoring solutions available in literature do not take computational and memory constraints of programmable switches into due account, preventing, de facto, their successful implementation in commodity switches. This claims that network monitoring tasks can be executed in programmable switches. Our evaluations show that the contributions in this thesis could be used by network administrators as well as network security engineers, to better understand the network status depending on different monitoring metrics, and thus prevent network infrastructure and service outages.
Resumo:
Advancements in technology have enabled increasingly sophisticated automation to be introduced into the flight decks of modern aircraft. Generally, this automation was added to accomplish worthy objectives such as reducing flight crew workload, adding additional capability, or increasing fuel economy. Automation is necessary due to the fact that not all of the functions required for mission accomplishment in today’s complex aircraft are within the capabilities of the unaided human operator, who lacks the sensory capacity to detect much of the information required for flight. To a large extent, these objectives have been achieved. Nevertheless, despite all the benefits from the increasing amounts of highly reliable automation, vulnerabilities do exist in flight crew management of automation and Situation Awareness (SA). Issues associated with flight crew management of automation include: • Pilot understanding of automation’s capabilities, limitations, modes, and operating principles and techniques. • Differing pilot decisions about the appropriate automation level to use or whether to turn automation on or off when they get into unusual or emergency situations. • Human-Machine Interfaces (HMIs) are not always easy to use, and this aspect could be problematic when pilots experience high workload situations. • Complex automation interfaces, large differences in automation philosophy and implementation among different aircraft types, and inadequate training also contribute to deficiencies in flight crew understanding of automation.