901 resultados para Slow Crack-growth
Resumo:
Adipose tissue forms when basement membrane extract (Matrigel™) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 μL collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.
Resumo:
The objective was to measure productivity growth and its components in Finnish agriculture, especially in dairy farming. The objective was also to compare different methods and models - both parametric (stochastic frontier analysis) and non-parametric (data envelopment analysis) - in estimating the components of productivity growth and the sensitivity of results with respect to different approaches. The parametric approach was also applied in the investigation of various aspects of heterogeneity. A common feature of the first three of five articles is that they concentrate empirically on technical change, technical efficiency change and the scale effect, mainly on the basis of the decompositions of Malmquist productivity index. The last two articles explore an intermediate route between the Fisher and Malmquist productivity indices and develop a detailed but meaningful decomposition for the Fisher index, including also empirical applications. Distance functions play a central role in the decomposition of Malmquist and Fisher productivity indices. Three panel data sets from 1990s have been applied in the study. The common feature of all data used is that they cover the periods before and after Finnish EU accession. Another common feature is that the analysis mainly concentrates on dairy farms or their roughage production systems. Productivity growth on Finnish dairy farms was relatively slow in the 1990s: approximately one percent per year, independent of the method used. Despite considerable annual variation, productivity growth seems to have accelerated towards the end of the period. There was a slowdown in the mid-1990s at the time of EU accession. No clear immediate effects of EU accession with respect to technical efficiency could be observed. Technical change has been the main contributor to productivity growth on dairy farms. However, average technical efficiency often showed a declining trend, meaning that the deviations from the best practice frontier are increasing over time. This suggests different paths of adjustment at the farm level. However, different methods to some extent provide different results, especially for the sub-components of productivity growth. In most analyses on dairy farms the scale effect on productivity growth was minor. A positive scale effect would be important for improving the competitiveness of Finnish agriculture through increasing farm size. This small effect may also be related to the structure of agriculture and to the allocation of investments to specific groups of farms during the research period. The result may also indicate that the utilization of scale economies faces special constraints in Finnish conditions. However, the analysis of a sample of all types of farms suggested a more considerable scale effect than the analysis on dairy farms.
Resumo:
Cesium hydrogen l-malate monohydrate, CsH(C4H4O5)·H2O, is a new chiral open-framework semi-organic crystalline material with a second-harmonic generation efficiency one order of magnitude greater than KDP. Single crystals of this new material have been grown by the conventional slow cooling technique from aqueous solution. Grown crystals display both platy and prismatic morphologies depending on the imposed supersaturation. Hardness values measured using Vickers hardness indenter show considerable anisotropy. The resistivity behavior at room temperature and above, places the crystal between an ionic conductor and a dielectric. The single-crystal SHG efficiency estimated through Maker fringes experiment gives deff which is 4.24 times that of KDP. Single and multiple shot experiments performed on the grown crystals for the fundamental and second harmonic of pulsed Nd:YAG laser (1064 and 532 nm) show that it exhibits a high laser damage threshold which is a favorable property for nonlinear optical applications.
Resumo:
We present the simplest model that permits a largely analytical exploration of the m =1 counter-rotating instability in a `hot' nearly Keplerian disc of collisionless self-gravitating matter. The model consists of a two-component softened gravity disc, whose linear modes are analysed using the Wentzel-Kramers-Brillouin approximation. The modes are slow in the sense that their (complex) frequency is smaller than the Keplerian orbital frequency by a factor which is of order the ratio of the disc mass to the mass of the central object. Very simple analytical expressions are derived for the precession frequencies and growth rates of local modes; it is shown that a nearly Keplerian discm must be unrealistically hot to avoid an overstability. Global modes are constructed for the case of zero net rotation.
Resumo:
Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.
Resumo:
We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.
Resumo:
Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.
Resumo:
Single crystals of a recent ferroelectric material, glycine phosphite were grown from aqueous solution employing the techniques of slow cooling and controlled evaporation. Powder X-ray diffraction studies as well as thermal analysis were carried out on the grown crystals. The morphology of the crystal has been determined using contact and optical goniometry. The mechanical hardness of the crystal was evaluated by Vickers indentation method. Thickness dependence of the dielectric properties has been investigated and the results can be interpreted in terms of a surface layer of lower dielectric constant.
Resumo:
3-(2,3-Dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (DMPP) a potential second harmonic generating (SHG) has been synthesized and grown as a single crystal by the slow evaporation technique at ambient temperature. The structure determination of the grown crystal was done by single crystal X-ray diffraction study. DMPP crystallizes with orthorhombic system with cell parameters a = 20.3106(8)angstrom, b = 4.9574(2)angstrom, c = 13.4863(5)angstrom, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees and space group Pca2(1). The crystals were characterized by FT-IR, thermal analysis, UV-vis-NIR spectroscopy and SHG measurements. Various functional groups present in DMPP were ascertained by FTIR analysis. DMPP is thermally stable up to 80 degrees C and optically transparent in the visible region. The crystal exhibits SHG efficiency comparable to that of KDP. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The fatigue de-bond growth studies have been conducted on adhesively bonded lap joint specimens between aluminium and aluminium with Redux-319A adhesive with a pre-defined crack of 3 mm at the bond end. The correlations between fracture parameters and the de-bond growth data are established using both numerical and experimental techniques. In the numerical method, geometrically non-linear finite element analyses were carried out on adhesively bonded joint specimen for various de-bond lengths measured from the lap end along the mid-bond line of the adhesive. The finite element results were post processed to estimate the SERR components G (I) and G (II) using the Modified Virtual Crack Closure Integral (MVCCI) procedure. In experimental work, specimens were fabricated and fatigue de-bond growth tests were conducted at a stress ratio R = -1. The results obtained from both numerical analyses and testing have been used to generate de-bond growth curve and establish de-bond growth law in the Paris regime for such joints. The de-bond growth rate is primarily function of mode-I SERR component G (I) since the rate of growth in shear mode is relatively small. The value of Paris exponent m is found to be 6.55. The high value of de-bond growth exponent in Paris regime is expected, since the adhesive is less ductile than conventional metallic materials. This study is important for estimating the life of adhesively bonded joints under both constant and variable amplitude fatigue loads.
Resumo:
Earlier studies have indicated that variability in size, surface texture and charge greatly influence the contaminant removal process in granular media. Based on surface characteristics of montmorillonite, it is anticipated that small addition of this clay would increase adhesion sites for bacterial growth and extracellular polymer production in the slow sand filter and thereby enhance its contaminant removal ability. Experiments were performed by permeating groundwater contaminated with pathogens (total coliform and E. Coli) and inorganic contaminants through the bentonite amended slow sand filter (BASSF). Surprisingly, the BASSF retained inorganic contaminants besides pathogens. Water-leach tests (pH of water leachate ranged from 2 to 9) with spent BASSF specimen indicated that the inorganic contaminants are irreversibly adsorbed to a large extent. It is considered that the combined effects of enhanced-organic matter mediated adhesion sites and increased hydraulic retention time enables the BASSF specimen to retain inorganic contaminants. It is envisaged that BASSF filters could find use in treating contaminated groundwater for potable needs at household and community level.
Resumo:
The synergistic effect of compressive growth stresses and reactor chemistry, silane presence, on dislocation bending at the very early stages of GaN growth has been studied using in-situ stress measurements and cross-sectional transmission electron microscopy. A single 100 nm Si-doped GaN layer is found to be more effective than a 1 mu m linearly graded AlGaN buffer layer in reducing dislocation density and preventing the subsequent layer from transitioning to a tensile stress. 1 mu m crack-free GaN layers with a dislocation density of 7 x 10(8)/cm(2), with 0.13 nm surface roughness and no enhancement in n-type background are demonstrated over 2 inch substrates using this simple transition scheme. (C) 2013 AIP Publishing LLC.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
Crystals of a new nonlinear optical (NLO) material, viz., L-histidinium 2-nitrobenzoate (LHNB) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-histidine and 2-nitrobenzoic acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) was elucidated using single crystal X-ray intensity data. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were also investigated. (C) 2012 Elsevier GmbH. All rights reserved.