1000 resultados para Skeleton prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many shallow landslides are triggered by heavy rainfall on hill slopes resulting in enormous casualties and huge economic losses in mountainous regions. Hill slope failure usually occurs as soil resistance deteriorates in the presence of the acting stress developed due to a number of reasons such as increased soil moisture content, change in land use causing slope instability, etc. Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration and information related to land surface susceptibility. Terrain analysis applications using spatial data such as aspect, slope, flow direction, compound topographic index, etc. along with information derived from remotely sensed data such as land cover / land use maps permit us to quantify and characterise the physical processes governing the landslide occurrence phenomenon. In this work, the probable landslide prone areas are predicted using two different algorithms – GARP (Genetic Algorithm for Rule-set Prediction) and Support Vector Machine (SVM) in a free and open source software package - openModeller. Several environmental layers such as aspect, digital elevation data, flow accumulation, flow direction, slope, land cover, compound topographic index, and precipitation data were used in modelling. A comparison of the simulated outputs, validated by overlaying the actual landslide occurrence points showed 92% accuracy with GARP and 96% accuracy with SVM in predicting landslide prone areas considering precipitation in the wettest month whereas 91% and 94% accuracy were obtained from GARP and SVM considering precipitation in the wettest quarter of the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the reconstruction problem from laterally truncated helical cone-beam projections. The reconstruction problem from lateral truncation, though similar to that of interior radon problem, is slightly different from it as well as the local (lambda) tomography and pseudo-local tomography in the sense that we aim to reconstruct the entire object being scanned from a region-of-interest (ROI) scan data. The method proposed in this paper is a projection data completion approach followed by the use of any standard accurate FBP type reconstruction algorithm. In particular, we explore a windowed linear prediction (WLP) approach for data completion and compare the quality of reconstruction with the linear prediction (LP) technique proposed earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.