971 resultados para Single Track Vehicle Dynamics.
Resumo:
We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.
Resumo:
We focus on the learning dynamics in multiproduct price-setting markets, where firms use past strategies and performance to adapt to the corresponding equilibrium.
Resumo:
Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.
Resumo:
Accident and Emergency (A&E) units provide a route for patients requiring urgent admission to acute hospitals. Public concern over long waiting times for admissions motivated this study, whose aim is to explore the factors which contribute to such delays. The paper discusses the formulation and calibration of a system dynamics model of the interaction of demand pattern, A&E resource deployment, other hospital processes and bed numbers; and the outputs of policy analysis runs of the model which vary a number of the key parameters. Two significant findings have policy implications. One is that while some delays to patients are unavoidable, reductions can be achieved by selective augmentation of resources within, and relating to, the A&E unit. The second is that reductions in bed numbers do not increase waiting times for emergency admissions, their effect instead being to increase sharply the number of cancellations of admissions for elective surgery. This suggests that basing A&E policy solely on any single criterion will merely succeed in transferring the effects of a resource deficit to a different patient group.
Resumo:
Recent evidence from animal and adult human subjects has demonstrated potential benefits to cognition from flavonoid supplementation. This study aimed to investigate whether these cognitive benefits extended to a sample of school-aged children. Using a cross-over design, with a wash out of at least seven days between drinks, fourteen 8-10 year old children consumed either a flavonoid-rich blueberry drink or matched vehicle. Two hours after consumption, subjects completed a battery of five cognitive tests comprising the Go-NoGo, Stroop, Rey’s Auditory Verbal Learning Task, Object Location Task, and a Visual N-back. In comparison to vehicle, the blueberry drink produced significant improvements in the delayed recall of a previously learned list of words, showing for the first time a cognitive benefit for acute flavonoid intervention in children. However, performance on a measure of proactive interference indicated that the blueberry intervention led to a greater negative impact of previously memorised words on the encoding of a set of new words. There was no benefit of our blueberry intervention for measures of attention, response inhibition or visuo-spatial memory. While findings are mixed, the improvements in delayed recall found in this pilot study suggest that, following acute flavonoid-rich blueberry interventions, school aged children encode memory items more effectively.
Resumo:
The launch of the Double Star mission has provided the opportunity to monitor events at distinct locations on the dayside magnetopause, in coordination with the quartet of Cluster spacecraft. We present results of two such coordinated studies. In the first, 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawn-side magnetosphere. Cluster observed northward moving FTEs with +/- polarity, whereas TC-1 saw -/+ polarity FTEs. The strength, motion and occurrence of the FTE signatures changes somewhat according to changes in IMF clock angle. These observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1. The observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, lying north and south of the reconnection line, respectively. This scenario is supported by the application of a model, designed to track flux tube motion, to conditions appropriate for the prevailing interplanetary conditions. The results from the model confirm the observational evidence that the low-latitude FTE dynamics is sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model predicts that TC-1 should miss the resulting FTEs more often than Cluster, as is observed. For the second conjunction, on the 4 Jan 2005, the Cluster and TC-1 spacecraft all exited the dusk-side magnetosphere almost simultaneously, with TC-1 lying almost equatorial and Cluster at northern latitudes at about 4 RE from TC-1. The spacecraft traverse the magnetopause during a strong reversal in the IMF from northward to southward and a number of magnetosheath FTE signatures are subsequently observed. One coordinated FTE, studied in detail by Pu et al, [this issue], carries and inflowing energetic electron population and shows a motion and orientation which is similar at all spacecraft and consistent with the predictions of the model for the flux tube dynamics, given a near sub-solar reconnection line. This event can be interpreted either as the passage of two parallel flux tubes arising from adjacent x-line positions, or as a crossing of a single flux tube at different positions.
Resumo:
We have investigated the chemisorption of CH3D and CD3H on Pt{11 0}-(1 2) by performing first-principles molecular dynamics simulations of the recombinative desorption of CH3D (from adsorbed methyl and deuterium) and of CD3H (from adsorbed trideuteromethyl and hydrogen). Vibrational analysis of the symmetry adapted internal coordinates of the desorbing molecules shows that excitation of the single C– D (C–H) bond in the parent molecule is strongly correlated with energy excess in the reaction coordinate. The results of the molecular dynamics simulations are consistent with observed mode- and bond-specific reactivity measurements for chemisorption of methane and its isotopomers on platinum and nickel surfaces.
Resumo:
Predictions of twenty-first century sea level change show strong regional variation. Regional sea level change observed by satellite altimetry since 1993 is also not spatially homogenous. By comparison with historical and pre-industrial control simulations using the atmosphere–ocean general circulation models (AOGCMs) of the CMIP5 project, we conclude that the observed pattern is generally dominated by unforced (internal generated) variability, although some regions, especially in the Southern Ocean, may already show an externally forced response. Simulated unforced variability cannot explain the observed trends in the tropical Pacific, but we suggest that this is due to inadequate simulation of variability by CMIP5 AOGCMs, rather than evidence of anthropogenic change. We apply the method of pattern scaling to projections of sea level change and show that it gives accurate estimates of future local sea level change in response to anthropogenic forcing as simulated by the AOGCMs under RCP scenarios, implying that the pattern will remain stable in future decades. We note, however, that use of a single integration to evaluate the performance of the pattern-scaling method tends to exaggerate its accuracy. We find that ocean volume mean temperature is generally a better predictor than global mean surface temperature of the magnitude of sea level change, and that the pattern is very similar under the different RCPs for a given model. We determine that the forced signal will be detectable above the noise of unforced internal variability within the next decade globally and may already be detectable in the tropical Atlantic.
Resumo:
Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.
Resumo:
Near-ground maneuvers, such as hover, approach, and landing, are key elements of autonomy in unmanned aerial vehicles. Such maneuvers have been tackled conventionally by measuring or estimating the velocity and the height above the ground, often using ultrasonic or laser range finders. Near-ground maneuvers are naturally mastered by flying birds and insects because objects below may be of interest for food or shelter. These animals perform such maneuvers efficiently using only the available vision and vestibular sensory information. In this paper, the time-tocontact (tau) theory, which conceptualizes the visual strategy with which many species are believed to approach objects, is presented as a solution for relative ground distance control for unmanned aerial vehicles. The paper shows how such an approach can be visually guided without knowledge of height and velocity relative to the ground. A control scheme that implements the tau strategy is developed employing only visual information from a monocular camera and an inertial measurement unit. To achieve reliable visual information at a high rate, a novel filtering system is proposed to complement the control system. The proposed system is implemented onboard an experimental quadrotor unmannedaerial vehicle and is shown to not only successfully land and approach ground, but also to enable the user to choose the dynamic characteristics of the approach. The methods presented in this paper are applicable to both aerial and space autonomous vehicles.
Resumo:
In mammalian cells, inflammation is mainly mediated by the binding of tumor necrosis factor alpha to tumor necrosis factor receptor 1. In this study, we investigated lateral dynamics of TNF-R1 before and after ligand binding using high-density single-particle tracking in combination with photoactivated localization microscopy. Our single-molecule data indicates the presence of tumor necrosis factor receptor 1 with different mobilities in the plasma membrane, suggesting different molecular organizations. Cholesterol depletion led to a decrease of slow receptor species and a strong increase in the average diffusion coefficient. Moreover, as a consequence of tumor necrosis factor-alpha treatment, the mean diffusion coefficient moderately increased while its distribution narrowed. Based on our observation, we propose a refined mechanism on the structural arrangement and activation of tumor necrosis factor receptor 1 in the plasma membrane.
Resumo:
There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.
Resumo:
Surfaces coated with polymer brushes in a good solvent are known to exhibit excellent tribological properties. We have performed coarse-grained equilibrium and nonequilibrium molecular dynamics (MD) simulations to investigate dextran polymer brushes in an aqueous environment in molecular detail. In a first step, we determined simulation parameters and units by matching experimental results for a single dextran chain. Analyzing this model when applied to a multichain system, density profiles of end-tethered polymer brushes obtained from equilibrium MD simulations compare very well with expectations based on self-consistent field theory. Simulation results were further validated against and correlated with available experimental results. The simulated compression curves (normal force as a function of surface separation) compare successfully with results obtained with a surface forces apparatus. Shear stress (friction) obtained via nonequilibrium MD is contrasted with nanoscale friction studies employing colloidal-probe lateral force microscopy. We find good agreement in the hydrodynamic regime and explain the observed leveling-off of the friction forces in the boundary regime by means of an effective polymer–wall attraction.
Resumo:
Understanding the dynamics and diversity of marine phytoplankton is essential for predicting oceanic primary production, oxygen generation and carbon sequestration. Several top-down and bottom-up factors lead to complex phytoplankton dynamics. Complexities further arise from inter-species interactions within phytoplankton communities. Consequently, some of the basic questions on phytoplankton diversity, identified long ago, still puzzle the ecologists: for example, what regulates the diversity in simple systems where species compete for limiting resources? In this context, allelopathic interaction among phytoplankton species has been identified as a potential driver of their dynamics and regulator of their diversity. This chapter deals with the importance of allelopathy in regulating the outcome of nutrient competition among phytoplankton species, through analysis of a resource-competition model. It demonstrates that, through the mechanism of pseudo-mixotrophy - proposed earlier by the author - allelopathy provides essential growth advantage to weaker competitors, and stabilizes resource competition, which ensures the coexistence of two phytoplankton on a single nutrient. In simple nutrient-phytoplankton interactions where higher-trophic influences are negligible, this mechanism theoretically promotes phytoplankton diversity, and can potentially support high diversity in natural phytoplankton communities.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.