874 resultados para Simulated Annealing Calculations
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Generalized Social Anxiety Disorder (SAD) is one of the most common anxiety conditions with impairment in social life. Cannabidiol (CBD), one major non-psychotomimetic compound of the cannabis sativa plant, has shown anxiolytic effects both in humans and in animals. This preliminary study aimed to compare the effects of a simulation public speaking test (SPST) on healthy control (HC) patients and treatment-naive SAD patients who received a single dose of CBD or placebo. A total of 24 never-treated patients with SAD were allocated to receive either CBD (600 mg; n = 12) or placebo (placebo; n = 12) in a double-blind randomized design 1 h and a half before the test. The same number of HC (n = 12) performed the SPST without receiving any medication. Each volunteer participated in only one experimental session in a double-blind procedure. Subjective ratings on the Visual Analogue Mood Scale (VAMS) and Negative Self-Statement scale (SSPS-N) and physiological measures (blood pressure, heart rate, and skin conductance) were measured at six different time points during the SPST. The results were submitted to a repeated-measures analysis of variance. Pretreatment with CBD significantly reduced anxiety, cognitive impairment and discomfort in their speech performance, and significantly decreased alert in their anticipatory speech. The placebo group presented higher anxiety, cognitive impairment, discomfort, and alert levels when compared with the control group as assessed with the VAMS. The SSPS-N scores evidenced significant increases during the testing of placebo group that was almost abolished in the CBD group. No significant differences were observed between CBD and HC in SSPS-N scores or in the cognitive impairment, discomfort, and alert factors of VAMS. The increase in anxiety induced by the SPST on subjects with SAD was reduced with the use of CBD, resulting in a similar response as the HC. Neuropsychopharmacology (2011) 36, 1219-1226; doi: 10.1038/npp.2011.6; published online 9 February 2011
Resumo:
Simulated public speaking (SPS) test is sensitive to drugs that interfere with serotonin-mediated neurotransmission and is supposed to recruit neural systems involved in panic disorder. The study was aimed at evaluating the effects of escitalopram, the most selective serotonin-selective reuptake inhibitor available, in SPS. Healthy males received, in a double-blind, randomized design, placebo (n = 12), 10 (n = 17) or 20 (n = 14) mg of escitalopram 2 hours before the test. Behavioural, autonomic and neuroendocrine measures were assessed. Both doses of escitalopram did not produce any effect before or during the speech but prolonged the fear induced by SPS. The test itself did not significantly change cortisol and prolactin levels but under the higher dose of escitalopram, cortisol and prolactin increased immediately after SPS. This fear-enhancing effect of escitalopram agrees with previously reported results with less selective serotonin reuptake inhibitors and the receptor antagonist ritanserin, indicating that serotonin inhibits the fear of speaking in public.
Resumo:
Objectives: To evaluate the influence of two surface sealants (BisCover/Single Bond) and three application techniques (unsealed/conventional/co-polymerization) on the roughness of two composites (Filtek Z250/Z350) after the toothbrushing test. Methods: Seventy-two rectangular specimens (5 mm x 10 mm x 3 mm) were fabricated and assigned into 12 groups (n = 6). Each sample was subjected to three random roughness readings at baseline, after 100,000 (intermediate), and 200,000 (final) toothbrushing strokes. Roughness (R) at each stage was obtained by the arithmetic mean of the reading of each specimen. Sealant removal was qualitatively examined (optical microscope) and classified into scores (0-3). Data were analyzed by Student`s paired t-test, two-way ANOVA/Tukey`s test, and by Wilcoxon, Kruskal-Wallis and Miller`s test (alpha = 0.05). Results: Z250 groups at baseline did not differ statistically from each other. Unsealed Z350 at baseline had lower R values. All the unsealed groups presented gradual decrease in R from baseline to final brushing. From baseline to the inter-mediate stage, Z250 co-polymerized groups presented a significant reduction in R (score 3). Conventionally sealed groups had no significant changes in R (scores 2-0.8). From baseline to the intermediate stage, the conventionally sealed Z350 Single Bond group had an increase in R (score 1.5). In the final stage, all the conventionally sealed groups presented a reduction in R (scores 0.7-0). Co-polymerized Single Bond groups had a significant reduction in R (scores 2.5-2.7), and co-polymerized BisCover groups an increase in R (scores 2.8-3). Conclusions: At any brushing stage, sealed composites presented superior performance when compared with unsealed composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated whether sodium bicarbonate solution, applied on enamel previously exposed to a simulated intrinsic acid, can control dental erosion. Volunteers wore palatal devices containing enamel slabs, which were exposed twice daily extra-orally to hydrochloric acid (0.01 M, pH 2) for 2 min. Immediately afterwards, the palatal devices were re-inserted in the mouth and volunteers rinsed their oral cavity with a sodium bicarbonate solution or deionized water for 60 s. After the washout period, the palatal devices were refilled with a new set of specimens and participants were crossed over to receive the alternate rinse solution. The surface loss and surface microhardness (SMH) of specimens were assessed. The surface loss of eroded enamel rinsed with a sodium bicarbonate solution was significantly lower than the surface loss of eroded enamel rinsed with deionized water. There were no differences between treatments with sodium bicarbonate and deionized water for SMH measurements. Regardless of the solution used as an oral rinse, eroded enamel showed lower SMH than uneroded specimens. Rinsing with a sodium bicarbonate solution after simulated endogenous erosive challenge controlled enamel surface loss but did not alter the microhardness.
Resumo:
P>This study assessed the effect of simulated mastication on the retention of two stud attachment systems for 2-implants overdentures. Sixteen specimens, each simulating an edentulous ridge with implants and an overdenture were divided into two groups, according to the attachment system: Group I (Nobel Biocare ball-socket attachments) and Group II (Locator attachments). Retention forces were measured before and after 400 000 simulated masticatory loads in a customised device. Data were compared by two-way anova followed by Bonferroni test (alpha = 0 center dot 05). Group I presented significantly lower retention forces (Newtons) than Group II at baseline (10 center dot 6 +/- 3 center dot 6 and 66 center dot 4 +/- 16 center dot 0, respectively). However, differences were not significant after 400 000 loads (7 center dot 9 +/- 4 center dot 3 and 21 center dot 6 +/- 17 center dot 0). The number of cycles did not influence the measurements in Group I, whereas a non-linear descending curve was found for Group II. It was concluded that simulated mastication resulted in minor changes for the ball attachment tested. Nevertheless, it reduced the retention of Locator attachments to 40% of the baseline values, what suggests that mastication is a major factor associated with maintenance needs for this system.
Characterization of C2S4.+ isomers by mass spectrometry and ab initio molecular orbital calculations
Resumo:
With the exception of the sodium D-lines, recent calculations of line broadening cross sections for several multiplets of sodium by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805) are in substantial disagreement with cross sections interpolated from the tables of Anstee and O'Mara (Anstee and O'Mara 1995 Mon. Not. R. Astron. Soc. 276 859) and Barklem and O'Mara (Barklem P S and O'Mara B J 1997 Mon. Not. R. Astron. Soc. 290 102). The discrepancy is as large as a factor of 3 for the 3p-4d multiplet. The two theories are tested by using the results of each to synthesize lines in the solar spectrum. It is found that generally the data from the theory of Anstee, Barklem and O'Mara produce the best match to the observed solar spectrum. It is found, using a simple model for reflection of the optical electron by the potential barrier between the two atoms, that the reflection coefficient is too large for avoided crossings with the upper states of subordinate lines to contribute to line broadening, supporting the neglect of avoided ionic crossings by Anstee, Barklem and O'Mara for these lines. The large discrepancies between the two sets of calculations is a result of an approximate treatment of avoided ionic crossings for these lines by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805).
Resumo:
It is shown that the observed difference in sediment transporting efficiency by the swash uprush, compared with the downrush, could be mainly due to greater bed shear stress for a given velocity in the more abruptly accelerated uprush. The bed shear stress generated by an arbitrary free stream velocity time series is modelled in terms of usual wave boundary layer models plus a phase lead (phi(tau) of the bed shear stress compared with the free stream velocity at the peak frequency. With this approach, the total transport amounts in uprush and downrush can be modelled satisfactorily with the same sediment transport formula, without the need for different uprush and downrush coefficients. While the adaptation of sediment transport formulae from steady flow can thus lead to the right total amounts of sediment moved by this method, the timing of the instantaneous sediment transport rates are probably not accurately modelled due to the highly unsteady nature of the swash and the presence of pre-suspended sediment in the uprush. Nevertheless, the proposed method is a useful intermediate step before we have a complete understanding of sediment transport under very rapid accelerations and of the relative contribution of pre-suspended sediment to the onshore sediment transport in swash zones. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A simple method is provided for calculating transport rates of not too fine (d(50) greater than or equal to 0.20 mm) sand under sheet flow conditions. The method consists of a Meyer-Peter-type transport formula operating on a time-varying Shields parameter, which accounts for both acceleration-asymmetry and boundary layer streaming. While velocity moment formulae, e.g.., = Constant x calibrated against U-tube measurements, fail spectacularly under some real waves (Ribberink, J.S., Dohmen-Janssen, C.M., Hanes, D.M., McLean, S.R., Vincent, C., 2000. Near-bed sand transport mechanisms under waves. Proc. 27th Int. Conf. Coastal Engineering, Sydney, ASCE, New York, pp. 3263-3276, Fig. 12), the new method predicts the real wave observations equally well. The reason that the velocity moment formulae fail under these waves is partly the presence of boundary layer streaming and partly the saw-tooth asymmetry, i.e., the front of the waves being steeper than the back. Waves with saw-tooth asymmetry may generate a net landward sediment transport even if = 0, because of the more abrupt acceleration under the steep front. More abrupt accelerations are associated with thinner boundary layers and greater pressure gradients for a given velocity magnitude. The two real wave effects are incorporated in a model of the form Q(s)(t) = Q(s)[theta(t)] rather than Q(S)(t) = Q(S)[u(infinity)(t)], i.e., by expressing the transport rate in terms of an instantaneous Shields parameter rather than in terms of the free stream velocity, and accounting for both streaming and accelerations in the 0(t) calculations. The instantaneous friction velocities u(*)(t) and subsequently theta(t) are calculated as follows. Firstly, a linear filter incorporating the grain roughness friction factor f(2.5) and a phase angle phi(tau) is applied to u(infinity)(t). This delivers u(*)(t) which is used to calculate an instantaneous grain roughness Shields parameter theta(2.5)(t). Secondly, a constant bed shear stress is added which corresponds to the streaming related bed shear stress -rho ($) over bar((u) over tilde(w) over tilde)(infinity) . The method can be applied to any u(infinity)(t) time series, but further experimental validation is recommended before application to conditions that differ strongly from the ones considered below. The method is not recommended for rippled beds or for sheet flow with typical prototype wave periods and d(50) < 0.20 turn. In such scenarios, time lags related to vertical sediment movement become important, and these are not considered by the present model. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.