941 resultados para Service oriented architectures
Resumo:
Architecture description languages (ADLs) are used to specify high-level, compositional views of a software application. ADL research focuses on software composed of prefabricated parts, so-called software components. ADLs usually come equipped with rigorous state-transition style semantics, facilitating verification and analysis of specifications. Consequently, ADLs are well suited to configuring distributed and event-based systems. However, additional expressive power is required for the description of enterprise software architectures – in particular, those built upon newer middleware, such as implementations of Java’s EJB specification, or Microsoft’s COM+/.NET. The enterprise requires distributed software solutions that are scalable, business-oriented and mission-critical. We can make progress toward attaining these qualities at various stages of the software development process. In particular, progress at the architectural level can be leveraged through use of an ADL that incorporates trust and dependability analysis. Also, current industry approaches to enterprise development do not address several important architectural design issues. The TrustME ADL is designed to meet these requirements, through combining approaches to software architecture specification with rigorous design-by-contract ideas. In this paper, we focus on several aspects of TrustME that facilitate specification and analysis of middleware-based architectures for trusted enterprise computing systems.
Resumo:
Users are facing an increasing challenge of managing information and being available anytime anywhere, as the web exponentially grows. As a consequence, assisting them in their routine tasks has become a relevant issue to be addressed. In this paper, we introduce a software framework that supports the development of Personal Assistance Software (PAS). It relies on the idea of exposing a high level user model in order to increase user trust in the task delegation process as well as empowering them to manage it. The framework provides a synchronization mechanism that is responsible for dynamically adapting an underlying BDI agent-based running implementation in order to keep this high-level view of user customizations consistent with it.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Internet atual vem sofrendo vários problemas em termos de escalabilidade, desempenho, mobilidade, etc., devido ao vertiginoso incremento no número de usuários e o surgimento de novos serviços com novas demandas, propiciando assim o nascimento da Internet do Futuro. Novas propostas sobre redes orientadas a conteúdo, como a arquitetura Entidade Titulo (ETArch), proveem novos serviços para este tipo de cenários, implementados sobre o paradigma de redes definidas por software. Contudo, o modelo de transporte do ETArch é equivalente ao modelo best-effort da Internet atual, e vem limitando a confiabilidade das suas comunicações. Neste trabalho, ETArch é redesenhado seguindo o paradigma do sobreaprovisionamento de recursos para conseguir uma alocação de recursos avançada integrada com OpenFlow. Como resultado, o framework SMART (Suporte de Sessões Móveis com Alta Demanda de Recursos de Transporte), permite que a rede defina semanticamente os requisitos qualitativos das sessões para assim gerenciar o controle de Qualidade de Serviço visando manter a melhor Qualidade de Experiência possível. A avaliação do planos de dados e de controle teve lugar na plataforma de testes na ilha do projeto OFELIA, mostrando o suporte de aplicações móveis multimídia com alta demanda de recursos de transporte com QoS e QoE garantidos através de um esquema de sinalização restrito em comparação com o ETArch legado
Resumo:
Includes bibliography
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
The need for high bandwidth, due to the explosion of new multi\-media-oriented IP-based services, as well as increasing broadband access requirements is leading to the need of flexible and highly reconfigurable optical networks. While transmission bandwidth does not represent a limit due to the huge bandwidth provided by optical fibers and Dense Wavelength Division Multiplexing (DWDM) technology, the electronic switching nodes in the core of the network represent the bottleneck in terms of speed and capacity for the overall network. For this reason DWDM technology must be exploited not only for data transport but also for switching operations. In this Ph.D. thesis solutions for photonic packet switches, a flexible alternative with respect to circuit-switched optical networks are proposed. In particular solutions based on devices and components that are expected to mature in the near future are proposed, with the aim to limit the employment of complex components. The work presented here is the result of part of the research activities performed by the Networks Research Group at the Department of Electronics, Computer Science and Systems (DEIS) of the University of Bologna, Italy. In particular, the work on optical packet switching has been carried on within three relevant research projects: the e-Photon/ONe and e-Photon/ONe+ projects, funded by the European Union in the Sixth Framework Programme, and the national project OSATE funded by the Italian Ministry of Education, University and Scientific Research. The rest of the work is organized as follows. Chapter 1 gives a brief introduction to network context and contention resolution in photonic packet switches. Chapter 2 presents different strategies for contention resolution in wavelength domain. Chapter 3 illustrates a possible implementation of one of the schemes proposed in chapter 2. Then, chapter 4 presents multi-fiber switches, which employ jointly wavelength and space domains to solve contention. Chapter 5 shows buffered switches, to solve contention in time domain besides wavelength domain. Finally chapter 6 presents a cost model to compare different switch architectures in terms of cost.
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
Membrane proteins play a major role in every living cell. They are the key factors in the cell’s metabolism and in other functions, for example in cell-cell interaction, signal transduction, and transport of ions and nutrients. Cytochrome c oxidase (CcO), as one of the membrane proteins of the respiratory chain, plays a significant role in the energy transformation of higher organisms. CcO is a multi centered heme protein, utilizing redox energy to actively transport protons across the mitochondrial membrane. One aim of this dissertation is to investigate single steps in the mechanism of the ion transfer process coupled to electron transfer, which are not fully understood. The protein-tethered bilayer lipid membrane is a general approach to immobilize membrane proteins in an oriented fashion on a planar electrode embedded in a biomimetic membrane. This system enables the combination of electrochemical techniques with surface enhanced resonance Raman (SERRS), surface enhanced reflection absorption infrared (SEIRAS), and surface plasmon spectroscopy to study protein mediated electron and ion transport processes. The orientation of the enzymes within the surface confined architecture can be controlled by specific site-mutations, i.e. the insertion of a poly-histidine tag to different subunits of the enzyme. CcO can, thus, be oriented uniformly with its natural electron pathway entry pointing either towards or away from the electrode surface. The first orientation allows an ultra-fast direct electron transfer(ET) into the protein, not provided by conventional systems, which can be leveraged to study intrinsic charge transfer processes. The second orientation permits to study the interaction with its natural electron donor cytochrome c. Electrochemical and SERR measurements show conclusively that the redox site structure and the activity of the surface confined enzyme are preserved. Therefore, this biomimetic system offers a unique platform to study the kinetics of the ET processes in order to clarify mechanistic properties of the enzyme. Highly sensitive and ultra fast electrochemical techniques allow the separation of ET steps between all four redox centres including the determination of ET rates. Furthermore, proton transfer coupled to ET could be directly measured and discriminated from other ion transfer processes, revealing novel mechanistic information of the proton transfer mechanism of cytochrome c oxidase. In order to study the kinetics of the ET inside the protein, including the catalytic center, time resolved SEIRAS and SERRS measurements were performed to gain more insight into the structural and coordination changes of the heme environment. The electrical behaviour of tethered membrane systems and membrane intrinsic proteins as well as related charge transfer processes were simulated by solving the respective sets of differential equations, utilizing a software package called SPICE. This helps to understand charge transfer processes across membranes and to develop models that can help to elucidate mechanisms of complex enzymatic processes.
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
Higher education has a responsibility to educate a democratic citizenry and recent research indicates civic engagement is on the decline in the United States. Through a mixed methodological approach, I demonstrate that the potential exists for well structured short-term international service-learning programming to develop college students’ civic identities. Quantitative analysis of questionnaire data, collected from American college students immediately prior to their participation in a short-term service-learning experience in Northern Ireland and again upon their return to the United States, revealed increases in civic accountability, political efficacy, justice oriented citizenship, and service-learning. Subsequent qualitative analysis of interview transcripts, student journals, and field notes suggested that facilitated critical reflection before, during, and after the experience promoted transformational learning. Emergent themes included: (a) responsibilities to others, (b) the value of international service-learning, (c) crosspollination of ideas, (d) stepping outside the daily routine to facilitate divergent thinking, and (e) the necessity of precursory thinking for sustaining transformations in thinking. The first theme, responsibilities to others, was further divided into subthemes of thinking beyond oneself, raising awareness of responsibility to others, and voting responsibly.
Resumo:
Objective: Two patient-focused long-term research projects performed in the German outpatient psychotherapy system are focused on in this article. The TK (Techniker Krankenkasse) project is the first study to evaluate a quality assurance and feedback system with regard to its practical feasibility in German routine care. The other study (“Quality Assurance in Outpatient Psychotherapy in Bavaria”; QS-PSY-BAY) was designed to test a new approach for quality assurance in outpatient psychotherapy using electronic documentation of patient characteristics and outcome parameters. In addition this project provides the opportunity to analyze data on health-related costs for the patients undergoing outpatient psychotherapy. Method: Both projects and their results indicating high effect sizes are briefly described. Results: From the perspectives of the research teams, advisory boards and other stakeholders, the experiences with these projects are discussed focusing on obstacles, challenges, difficulties, and benefits in developing and implementing the studies. The triangle collaboration of therapists, researchers, and health insurance companies/health service institutions turned out to be fruitful in both studies. Conclusions: Despite some controversies between the partners the experiences indicate the importance of practiced-research collaborations to provide relevant information about the delivery of outpatient psychotherapy in the health system
Resumo:
Content Distribution Networks are mandatory components of modern web architectures, with plenty of vendors offering their services. Despite its maturity, new paradigms and architecture models are still being developed in this area. Cloud Computing, on the other hand, is a more recent concept which has expanded extremely quickly, with new services being regularly added to cloud management software suites such as OpenStack. The main contribution of this paper is the architecture and the development of an open source CDN that can be provisioned in an on-demand, pay-as-you-go model thereby enabling the CDN as a Service paradigm. We describe our experience with integration of CDNaaS framework in a cloud environment, as a service for enterprise users. We emphasize the flexibility and elasticity of such a model, with each CDN instance being delivered on-demand and associated to personalized caching policies as well as an optimized choice of Points of Presence based on exact requirements of an enterprise customer. Our development is based on the framework developed in the Mobile Cloud Networking EU FP7 project, which offers its enterprise users a common framework to instantiate and control services. CDNaaS is one of the core support components in this project as is tasked to deliver different type of multimedia content to several thousands of users geographically distributed. It integrates seamlessly in the MCN service life-cycle and as such enjoys all benefits of a common design environment, allowing for an improved interoperability with the rest of the services within the MCN ecosystem.