973 resultados para Semilinear Wave Equation
Resumo:
We introduce a new methodology that allows the construction of wave frequency distributions due to growing incoherent whistler-mode waves in the magnetosphere. The technique combines the equations of geometric optics (i.e. raytracing) with the equation of transfer of radiation in an anisotropic lossy medium to obtain spectral energy density as a function of frequency and wavenormal angle. We describe the method in detail, and then demonstrate how it could be used in an idealised magnetosphere during quiet geomagnetic conditions. For a specific set of plasma conditions, we predict that the wave power peaks off the equator at ~15 degrees magnetic latitude. The new calculations predict that wave power as a function of frequency can be adequately described using a Gaussian function, but as a function of wavenormal angle, it more closely resembles a skew normal distribution. The technique described in this paper is the first known estimate of the parallel and oblique incoherent wave spectrum as a result of growing whistler-mode waves, and provides a means to incorporate self-consistent wave-particle interactions in a kinetic model of the magnetosphere over a large volume.
Resumo:
The low wave number range of decaying turbulence governed by the Charney-Hasegawa-Mima (CHM) equation is examined theoretically and by direct numerical simulation. Here, the low wave number range is defined as values of the wave number k below the wave number kE corresponding to the peak of the energy spectrum, or alternatively the centroid wave number of the energy spectrum. The energy spectrum in the low wave number range in the infrared regime (k →0) is theoretically derived to be E(k) ∼k5, using a quasinormal Markovianized model of the CHM equation. This result is verified by direct numerical simulation of the CHM equation. The wave number triads (k,p,q) responsible for the formation of the low wave number spectrum are also examined. It is found that the energy flux Π(k) for k< kE can be entirely expressed by Π(-)(k), which is the total net input of energy to wave numbers
Resumo:
The long time–evolution of disturbances to slowly–varying solutions of partial differential equations is subject to the adiabatic invariance of the wave action. Generally, this approximate conservation law is obtained under the assumption that the partial differential equations are derived from a variational principle or have a canonical Hamiltonian structure. Here, the wave action conservation is examined for equations that possess a non–canonical (Poisson) Hamiltonian structure. The linear evolution of disturbances in the form of slowly varying wavetrains is studied using a WKB expansion. The properties of the original Hamiltonian system strongly constrain the linear equations that are derived, and this is shown to lead to the adiabatic invariance of a wave action. The connection between this (approximate) invariance and the (exact) conservation laws of pseudo–energy and pseudomomentum that exist when the basic solution is exactly time and space independent is discussed. An evolution equation for the slowly varying phase of the wavetrain is also derived and related to Berry's phase.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
Wave solutions to a mechanochemical model for cytoskeletal activity are studied and the results applied to the waves of chemical and mechanical activity that sweep over an egg shortly after fertilization. The model takes into account the calcium-controlled presence of actively contractile units in the cytoplasm, and consists of a viscoelastic force equilibrium equation and a conservation equation for calcium. Using piecewise linear caricatures, we obtain analytic solutions for travelling waves on a strip and demonstrate uiat the full nonlinear system behaves as predicted by the analytic solutions. The equations are solved on a sphere and the numerical results are similar to the analytic solutions. We indicate how the speed of the waves can be used as a diagnostic tool with which the chemical reactivity of the egg surface can be measured.
Resumo:
We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.
Resumo:
The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.
Resumo:
We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.
Resumo:
Small local earthquakes from two aftershock sequences in Porto dos GaA(0)chos, Amazon craton-Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q (c)) of coda waves modeled usingwhere Q (0) is the coda quality factor at frequency of 1 Hz and eta is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239-252, 2008), based in the temporal attenuation coefficient, chi(f) instead of Q(f), given by the equation for the calculation of the geometrical attenuation (gamma) and effective attenuation Q (c) values have been computed at central frequencies (and band) of 1.5 (1-2), 3.0 (2-4), 6.0 (4-8), 9.0 (6-12), 12 (8-16), and 18 (12-24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin for the surrounding shield and for the whole region of Porto dos GaA(0)chos Using the independent frequency model, we found: for the cratonic zone, gamma = 0.014 s (-aEuro parts per thousand 1), nu a parts per thousand 1.12; for the basin zone with sediments of similar to 500 m, gamma = 0.031 s (-aEuro parts per thousand 1), nu a parts per thousand 1.27; and for the Parecis basin with sediments of similar to 1,000 m, gamma = 0.047 s (-aEuro parts per thousand 1), nu a parts per thousand 1.42. Analysis of the attenuation factor (Q (c)) for different values of the geometrical spreading parameter (nu) indicated that an increase of nu generally causes an increase in Q (c), both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, (in the deepest part of the basin), than in the basement, (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.
Resumo:
We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We investigated drift-wave turbulence in the plasma edge of a small tokamak by considering solutions of the Hasegawa-Mima equation involving three interacting modes in Fourier space. The resulting low-dimensional dynamics presented periodic as well as chaotic evolution of the Fourier-mode amplitudes, and we performed the control of chaotic behaviour through the application of a fourth resonant wave of small amplitude.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
Exact analytic solutions are found to the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions.