914 resultados para Seasonality and site


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results of shore-based three-axis resistivity and X-ray computed tomography (CT) measurements on cube-shaped samples recovered during Leg 185 are presented along with moisture and density, P-wave velocity, resistivity, and X-ray CT measurements on whole-round samples of representative lithologies from Site 1149. These measurements augment the standard suite of physical properties obtained during Leg 185 from the cube samples and samples obtained adjacent to the cut cubes. Both shipboard and shore-based measurements of physical properties provide information that assists in characterizing lithologic units, correlating cored material with downhole logging data, understanding the nature of consolidation, and interpreting seismic reflection profiles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Micro-crystalline barites recovered by deep-sea drilling from Site 684 on the Peru margin and Site 799 in the Japan Sea are highly enriched in the heavy sulfur isotope relative to seawater ( d34S up to +84?). This isotopic composition is consistent with remobilization of biogenic barite triggered by sulfate reduction, and subsequent reprecipitation as a diagenetic barite front. The high levels of barium sulfate in these deposits (10-50%) cannot be explained by a diffusive transport model in sediments experiencing a constant rate of sedimentation. When sedimentation rates change radically, the barite front will remain at a given depth interval leading to large accumulations of barium sulfate. Such conditions may have generated the barite deposits at Site 799. At Site 684, on the other hand, there is evidence that the barite deposits are a result of the tectonically-driven advection of sulfate-bearing fluids through the sediment column.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physical properties of basalts from Ocean Drilling Program Sites 800 and 801 in the Pigafetta Basin and Site 802 in the East Mariana Basin, including porosity, wet-bulk density, grain density, compressional wave velocity, and thermal conductivity, were measured aboard JOIDES Resolution during Leg 129. The ranges for the properties are large, as typified by the velocity, which varies from 3.46 to 6.59 km/s. Extensively altered basalts immediately above and below a silicified hydrothermal deposit (60-69 m sub-basement depth) at Site 801 display the highest porosity, and lowest bulk density, velocity, and thermal conductivity, whereas the slightly altered rocks from Site 802 and the lowermost part of Site 801 represent the other extreme in physical properties variations. In order to better establish the relationship between physical properties and alteration of the rocks, the compressional wave velocities were compared with results from major and trace elemental analyses and petrographic examination of select samples. For the Leg 129 basalts, velocity displays a generally consistent decrease with increasing K2O, H2O+, loss on ignition, and Rb contents and the value of Fe3+/FeT and decreasing concentrations of SiO2, FeOT, CaO, MgO, and MnO. These trends are consistent with trends documented for the progressive alteration of oceanic crust and indicate that on a laboratory sample scale, basalt alteration is largely responsible for the variation of the physical properties of basalts sampled at Sites 800, 801, and 802.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study relates the organic sedimentation characteristics to the lithostratigraphic successionsthat were observed at Site 767 (Celebes Sea) and Site 768 (Sulu Sea) during ODP Leg 124. It is based on the total organic carbon content (TOC) of the sediments, on the petrographictype and maturity of the organic matter, and on the TOC accumulation rates calculated for the lithostratigraphic units. In the Celebes and Sulu Seas sediments, the organic matter is mainly of terrestrial origin with the highest concentrations and TOC accumulation rates occurring in the middle Miocene turbiditic sequences that correspond to a major compressive event between the Philippine Mobile Belt and the Palawan, Cagayan, and Sulu Ridges. Petrographic analysis of the Eocene and lower Miocene organic matter in the Celebes Sea shows that it consists only of highly degraded terrestrial particles. This observation and the very low TOC accumulation rates indicate poor conditions for organic carbon preservation during this open-ocean phase of the Celebes Basin formation. The organic matter, either of marine or terrestrial origin, is much better preserved in the younger sediments, suggesting physico-chemical changes in the depositional environment. Because of the dilution phenomena by turbidites, it is difficult to observe the progressive improvement of the organic matter preservation throughout the turbiditic series. The same change in preservation is broadly observed in the Sulu Sea from the early Miocene (rapid opening phase of the basin with massive pyroclastic deposits) to the present.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The strontium isotope ratios (87Sr/86Sr) of marine barite microcrystals separated from Cretaceous sedimentary deposits from Ocean Drilling Program and Deep Sea Drilling Project sites from the Pacific and Indian Oceans have been compared to the composite Sr isotope curve of McArthur et al. The barite in these cores accurately recorded the seawater 87Sr/86Sr ratio, thereby reaffirming the composite Cretaceous strontium curve. Moreover, marine barite is a more reliable recorder of 87Sr/86Sr than is carbonate in sedimentary deposits with high clay content, thereby providing an opportunity for Sr isotope stratigraphy and dating in carbonate-poor or diagenetically altered sections. We have used the barite-derived Sr isotope record to refine the biostratigraphic age models of the sites investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthetic seismograms provide a crucial link between lithologic variations within a drill hole and reflectors on seismic profiles crossing the site. In essence, they provide a ground-truth for the interpretation of seismic data. Using a combination of core and logging data, we created synthetic seismograms for Ocean Drilling Program Sites 1165 and 1166, drilled during Leg 188, and Site 742, drilled during Leg 119, all in Prydz Bay, Antarctica. Results from Site 1165 suggest that coring penetrated a target reflector initially thought to represent the onset of drift sedimentation, but the lithologic change across the boundary does not show a change from predrift to drift sediments. The origin of a shallow reflector packet in the seismic line across Site 1166 and a line connecting Sites 1166 and 742 was resolved into its constituent sources, as this reflector occurs in a region of large-scale, narrowly spaced impedance changes. Furthermore, Site 1166 was situated in a fluvio-deltaic system with widely variable geology, and bed thickness changes were estimated between the site and both seismic lines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica islandica from 6 different sites - the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast Iceland - covering a temperature and salinity gradient of 4-10°C (annual mean) and 25-34, respectively. Based on von Bertalanffy growth models and size-mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body mass, temperature, and site. A. islandica populations differed distinctly in maximum life span (40 y in Kiel Bay to 197 y in Iceland), but less in growth performance (phi' ranged from 2.41 in the White Sea to 2.65 in Kattegat). Individual lifetime energy throughput, as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with increasing life span; PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay). Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/ PG ranged from 0.196 (Iceland) to 2.728 (White Sea), and P/B ranged from 0.203-0.285/y. Life span is the principal determinant of the relationship between budget parameters, whereas temperature affects net growth efficiency only. In the White Sea population, both growth performance and net growth efficiency of A. islandica were lowest. We presume that low temperature combined with low salinity represent a particularly stressful environment for this species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three sites, drilled during Ocean Drilling Program (ODP) Leg 167, were chosen for detailed late Pleistocene paleoceanographic studies of intermediate water along the California margin. These sites are Site 1011 (Animal Basin, 31°17'N, 117°38'W, 2033 m water depth, 1600 m sill depth), Site 1012 (East Cortez Basin, 32°17'N, 118°23'W, 1783 m water depth, 1415 m sill depth), and Site 1018 (Guide Seamount, 36°59'N, 123°17'W, 2476 m water depth). Here we present carbon and oxygen isotopic measurements of benthic foraminifers from these three sites. We made 135 measurements from Site 1011, 387 measurements from Site 1012, and 231 measurements from Site 1018. This data report includes an explanation of the methods used to generate these isotopic records and the age models for each site. Detailed paleoceanographic interpretations of the isotopic records are currently under way.