988 resultados para Sea urchins, Fossil.
Resumo:
Fisheries management agencies around the world collect age data for the purpose of assessing the status of natural resources in their jurisdiction. Estimates of mortality rates represent a key information to assess the sustainability of fish stocks exploitation. Contrary to medical research or manufacturing where survival analysis is routinely applied to estimate failure rates, survival analysis has seldom been applied in fisheries stock assessment despite similar purposes between these fields of applied statistics. In this paper, we developed hazard functions to model the dynamic of an exploited fish population. These functions were used to estimate all parameters necessary for stock assessment (including natural and fishing mortality rates as well as gear selectivity) by maximum likelihood using age data from a sample of catch. This novel application of survival analysis to fisheries stock assessment was tested by Monte Carlo simulations to assert that it provided unbiased estimations of relevant quantities. The method was applied to the data from the Queensland (Australia) sea mullet (Mugil cephalus) commercial fishery collected between 2007 and 2014. It provided, for the first time, an estimate of natural mortality affecting this stock: 0.22±0.08 year −1 .
Resumo:
There has been much controversy over the Trans-Pacific Partnership (TPP) – a plurilateral trade agreement involving a dozen nations from throughout the Pacific Rim – and its impact upon the environment, biodiversity, and climate change. The secretive treaty negotiations involve Australia and New Zealand; countries from South East Asia such as Brunei Darussalam, Malaysia, Singapore, Vietnam, and Japan; the South American nations of Peru and Chile; and the members of the 1994 North American Free Trade Agreement (NAFTA), Canada, Mexico and the United States. There was an agreement reached between the parties in October 2015. The participants asserted: ‘We expect this historic agreement to promote economic growth, support higher-paying jobs; enhance innovation, productivity and competitiveness; raise living standards; reduce poverty in our countries; and to promote transparency, good governance, and strong labor and environmental protections.’ The final texts of the agreement were published in November 2015. There has been discussion as to whether other countries – such as Indonesia, the Philippines, and South Korea – will join the deal. There has been much debate about the impact of this proposed treaty upon intellectual property, the environment, biodiversity and climate change. There have been similar concerns about the Trans-Atlantic Trade and Investment Partnership (TTIP) – a proposed trade agreement between the United States and the European Union. In 2011, the United States Trade Representative developed a Green Paper on trade, conservation, and the environment in the context of the TPP. In its rhetoric, the United States Trade Representative has maintained that it has been pushing for strong, enforceable environmental standards in the TPP. In a key statement in 2014, the United States Trade Representative Mike Froman insisted: ‘The United States’ position on the environment in the Trans-Pacific Partnership negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative maintained: ‘Our proposals in the TPP are centered around the enforcement of environmental laws, including those implementing multilateral environmental agreements (MEAs) in TPP partner countries, and also around trailblazing, first-ever conservation proposals that will raise standards across the region’. Moreover, the United States Trade Representative asserted: ‘Furthermore, our proposals would enhance international cooperation and create new opportunities for public participation in environmental governance and enforcement.’ The United States Trade Representative has provided this public outline of the Environment Chapter of the TPP: A meaningful outcome on environment will ensure that the agreement appropriately addresses important trade and environment challenges and enhances the mutual supportiveness of trade and environment. The Trans-Pacific Partnership countries share the view that the environment text should include effective provisions on trade-related issues that would help to reinforce environmental protection and are discussing an effective institutional arrangement to oversee implementation and a specific cooperation framework for addressing capacity building needs. They also are discussing proposals on new issues, such as marine fisheries and other conservation issues, biodiversity, invasive alien species, climate change, and environmental goods and services. Mark Linscott, an assistant Trade Representative testified: ‘An environment chapter in the TPP should strengthen country commitments to enforce their environmental laws and regulations, including in areas related to ocean and fisheries governance, through the effective enforcement obligation subject to dispute settlement.’ Inside US Trade has commented: ‘While not initially expected to be among the most difficult areas, the environment chapter has emerged as a formidable challenge, partly due to disagreement over the United States proposal to make environmental obligations binding under the TPP dispute settlement mechanism’. Joshua Meltzer from the Brookings Institute contended that the trade agreement could be a boon for the protection of the environment in the Pacific Rim: Whether it is depleting fisheries, declining biodiversity or reduced space in the atmosphere for Greenhouse Gas emissions, the underlying issue is resource scarcity. And in a world where an additional 3 billion people are expected to enter the middle class over the next 15 years, countries need to find new and creative ways to cooperate in order to satisfy the legitimate needs of their population for growth and opportunity while using resources in a manner that is sustainable for current and future generations. The TPP parties already represent a diverse range of developed and developing countries. Should the TPP become a free trade agreement of the Asia-Pacific region, it will include the main developed and developing countries and will be a strong basis for building a global consensus on these trade and environmental issues. The TPP has been promoted by its proponents as a boon to the environment. The United States Trade Representative has maintained that the TPP will protect the environment: ‘The United States’ position on the environment in the TPP negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative discussed ‘Trade for a Greener World’ on World Environment Day. Andrew Robb, at the time the Australian Trade and Investment Minister, vowed that the TPP will contain safeguards for the protection of the environment. In November 2015, after the release of the TPP text, Rohan Patel, the Special Assistant to the President and Deputy Director of Intergovernmental Affairs, sought to defend the environmental credentials of the TPP. He contended that the deal had been supported by the Nature Conservancy, the International Fund for Animal Welfare, the Joint Ocean Commission Initiative, the World Wildlife Fund, and World Animal Protection. The United States Congress, though, has been conflicted by the United States Trade Representative’s arguments about the TPP and the environment. In 2012, members of the United States Congress - including Senator Ron Wyden (D-OR), Olympia Snowe (R-ME), and John Kerry (D-MA) – wrote a letter, arguing that the trade agreement needs to provide strong protection for the environment: ‘We believe that a '21st century agreement' must have an environment chapter that guarantees ongoing sustainable trade and creates jobs, and this is what American businesses and consumers want and expect also.’ The group stressed that ‘A binding and enforceable TPP environment chapter that stands up for American interests is critical to our support of the TPP’. The Congressional leaders maintained: ‘We believe the 2007 bipartisan congressional consensus on environmental provisions included in recent trade agreements should serve as the framework for the environment chapter of the TPP.’ In 2013, senior members of the Democratic leadership expressed their opposition to granting President Barack Obama a fast-track authority in respect of the TPP House of Representatives Minority Leader Nancy Pelosi said: ‘No on fast-track – Camp-Baucus – out of the question.’ Senator Majority leader Harry Reid commented: ‘I’m against Fast-Track: Everyone would be well-advised to push this right now.’ Senator Elizabeth Warren has been particularly critical of the process and the substance of the negotiations in the TPP: From what I hear, Wall Street, pharmaceuticals, telecom, big polluters and outsourcers are all salivating at the chance to rig the deal in the upcoming trade talks. So the question is, Why are the trade talks secret? You’ll love this answer. Boy, the things you learn on Capitol Hill. I actually have had supporters of the deal say to me ‘They have to be secret, because if the American people knew what was actually in them, they would be opposed. Think about that. Real people, people whose jobs are at stake, small-business owners who don’t want to compete with overseas companies that dump their waste in rivers and hire workers for a dollar a day—those people, people without an army of lobbyists—they would be opposed. I believe if people across this country would be opposed to a particular trade agreement, then maybe that trade agreement should not happen. The Finance Committee in the United States Congress deliberated over the Trans-Pacific Partnership negotiations in 2014. The new chair Ron Wyden has argued that there needs to be greater transparency in trade. Nonetheless, he has mooted the possibility of a ‘smart-track’ to reconcile the competing demands of the Obama Administration, and United States Congress. Wyden insisted: ‘The new breed of trade challenges spawned over the last generation must be addressed in imaginative new policies and locked into enforceable, ambitious, job-generating trade agreements.’ He emphasized that such agreements ‘must reflect the need for a free and open Internet, strong labor rights and environmental protections.’ Elder Democrat Sander Levin warned that the TPP failed to provide proper protection for the environment: The TPP parties are considering a different structure to protect the environment than the one adopted in the May 10 Agreement, which directly incorporated seven multilateral environmental agreements into the text of past trade agreements. While the form is less important than the substance, the TPP must provide an overall level of environmental protection that upholds and builds upon the May 10 standard, including fully enforceable obligations. But many of our trading partners are actively seeking to weaken the text to the point of falling short of that standard, including on key issues like conservation. Nonetheless, 2015, President Barack Obama was able to secure the overall support of the United States Congress for his ‘fast-track’ authority. This was made possible by the Republicans and dissident Democrats. Notably, Oregon Senator Ron Wyden switched sides, and was transformed from a critic of the TPP to an apologist for the TPP. For their part, green political parties and civil society organisations have been concerned about the secretive nature of the negotiations; and the substantive implications of the treaty for the environment. Environmental groups and climate advocates have been sceptical of the environmental claims made by the White House for the TPP. The Green Party of Aotearoa New Zealand, the Australian Greens and the Green Party of Canada have released a joint declaration on the TPP observing: ‘More than just another trade agreement, the TPP provisions could hinder access to safe, affordable medicines, weaken local content rules for media, stifle high-tech innovation, and even restrict the ability of future governments to legislate for the good of public health and the environment’. In the United States, civil society groups such as the Sierra Club, Public Citizen, WWF, the Friends of the Earth, the Rainforest Action Network and 350.org have raised concerns about the TPP and the environment. Allison Chin, President of the Sierra Club, complained about the lack of transparency, due process, and public participation in the TPP talks: ‘This is a stealth affront to the principles of our democracy.’ Maude Barlow’s The Council of Canadians has also been concerned about the TPP and environmental justice. New Zealand Sustainability Council executive director Simon Terry said the agreement showed ‘minimal real gains for nature’. A number of organisations have joined a grand coalition of civil society organisations, which are opposed to the grant of a fast-track. On the 15th January 2013, WikiLeaks released the draft Environment Chapter of the TPP - along with a report by the Chairs of the Environmental Working Group. Julian Assange, WikiLeaks' publisher, stated: ‘Today's WikiLeaks release shows that the public sweetener in the TPP is just media sugar water.’ He observed: ‘The fabled TPP environmental chapter turns out to be a toothless public relations exercise with no enforcement mechanism.’ This article provides a critical examination of the draft Environment Chapter of the TPP. The overall argument of the article is that the Environment Chapter of the TPP is an exercise in greenwashing – it is a public relations exercise by the United States Trade Representative, rather than a substantive regime for the protection of the environment in the Pacific Rim. Greenwashing has long been a problem in commerce, in which companies making misleading and deceptive claims about the environment. In his 2012 book, Greenwash: Big Brands and Carbon Scams, Guy Pearse considers the rise of green marketing and greenwashing. Government greenwashing is also a significant issue. In his book Storms of My Grandchildren, the climate scientist James Hansen raises his concerns about government greenwashing. Such a problem is apparent with the TPP – in which there was a gap between the assertions of the United States Government, and the reality of the agreement. This article contends that the TPP fails to meet the expectations created by President Barack Obama, the White House, and the United States Trade Representative about the environmental value of the agreement. First, this piece considers the relationship of the TPP to multilateral environmental treaties. Second, it explores whether the provisions in respect of the environment are enforceable. Third, this article examines the treatment of trade and biodiversity in the TPP. Fourth, this study considers the question of marine capture fisheries. Fifth, there is an evaluation of the cursory text in the TPP on conservation. Sixth, the article considers trade in environmental services under the TPP. Seventh, this article highlights the tensions between the TPP and substantive international climate action. It is submitted that the TPP undermines effective and meaningful government action and regulation in respect of climate change. The conclusion also highlights that a number of other chapters of the TPP will impact upon the protection of the environment – including the Investment Chapter, the Intellectual Property Chapter, the Technical Barriers to Trade Chapter, and the text on public procurement.
Resumo:
This study deals with algal species occurring commonly in the Baltic Sea: haptophyte Prymnesium parvum, dinoflagellates Dinophysis acuminata, D. norvegica and D. rotundata, and cyanobacterium Nodularia spumigena. The hypotheses are connected to the toxicity of the species, to the factors determining toxicity, to the consequences of toxicity and to the transfer of toxins in the aquatic food web. Since the Baltic Sea is severely eutrophicated, the fast-growing haptophytes have potential in causing toxic blooms. In our studies, the toxicity (as haemolytic activity) of the haptophyte P. parvum was highest under phosphorus-limited conditions, but the cells were toxic also under nitrogen limitation and under nutrient-balanced growth conditions. The cellular nutrient ratios were tightly related to the toxicity. The stoichiometric flexibility for cellular phosphorus quota was higher than for nitrogen, and nitrogen limitation led to decreased biomass. Negative allelopathic effects on another algae (Rhodomonas salina) could be observed already at low P. parvum cell densities, whereas immediate lysis of R. salina cells occurred at P. parvum cell densities corresponding to natural blooms. Release of dissolved organic carbon from the R. salina cells was measured within 30 minutes, and an increase in bacterial number and biomass was measured within 23 h. Because of the allelopathic effect, formation of a P. parvum bloom may accelerate after a critical cell density is reached and the competing species are eliminated. A P. parvum bloom indirectly stimulates bacterial growth, and alters the functioning of the planktonic food web by increasing the carbon transfer through the microbial loop. Our results were the first reports on DSP toxins in Dinophysis cells in the Gulf of Finland and on PTX-2 in the Baltic Sea. Cellular toxin contents in Dinophysis spp. ranged from 0.2 to 149 pg DTX-1 cell-1 and from 1.6 to 19.9 pg PTX-2 cell-1 in the Gulf of Finland. D. norvegica was found mainly around the thermocline (max. 200 cells L-1), whereas D. acuminata was found in the whole mixed layer (max. 7 280 cells L-1). Toxins in the sediment trap corresponded to 1 % of DTX-1 and 0.01 % PTX-2 of the DSP pool in the suspended matter. This indicates that the majority of the DSP toxins does not enter the benthic community, but is either decomposed in the water column, or transferred to higher trophic levels in the planktonic food chain. We found that nodularin, produced by Nodularia spumigena, was transferred to the copepod Eurytemora affinis through three pathways: by grazing on filaments of small Nodularia, directly from the dissolved pool, and through the microbial food web by copepods grazing on ciliates, dinoflagellates and heterotrophic nanoflagellates. The estimated proportion of the microbial food web in nodularin transfer was 22-45 % and 71-76 % in our two experiments, respectively. This highlights the potential role of the microbial food web in the transfer of toxins in the planktonic food web.
Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs
Resumo:
Long-term monitoring data collected from wild smolts of Atlantic salmon (Salmo salar) in the Simojoki river, northern Finland, were used in studying the relationships between the smolt size and age, smolt and postsmolt migration, environmental conditions and postsmolt survival. The onset of the smolt run was significantly dependent on the rising water temperature and decreasing discharge of the river in the spring. The mean length of smolts migrating early in the season was commonly higher and the mean age always older than among smolts migrating later. Many of the smolts migrating early in the season and almost all smolts migrating later had started their new growth in spring in the river before their sea entry. Among postsmolts, the time required for emigration from the estuary was dependent on the sea surface temperature (SST) off the river, being significantly shorter in years with warm than cold sea temperatures. After leaving the estuary, the postsmolts migrated southwards along the eastern coast of the northern Gulf of Bothnia, the geographical distribution of the tag recoveries coinciding with the warm thermal zone in spring in the coastal area. After arriving in the southern Gulf of Bothnia in late summer the postsmolts mostly migrated near the western coast, reaching the Baltic Main Basin in late autumn. Until the early 1990s there was only a weak positive association between smolt length and postsmolt survival. However, following a subsequent decrease in the mean smolt size, a significant positive dependence was observed between smolt size and the reported recapture rate of tagged salmon. The differences in recapture rates between smolts tagged during the first and second half of the annual migration season were insignificant, indicating that the seasonal variation in smolt size and age seem to be too small to affect survival. Among the climatic factors examined, the summer SST in the Gulf of Bothnia was most clearly related to the survival of the wild postsmolts. Postsmolt survival appeared to be highest in years when the SST in June in the Bothnian Bay varied between 9 and 12 ºC. In addition, the survival of wild postsmolts showed a significant positive dependence on the SST in July in the Bothnian Sea, but not on the abundance of the prey fish (0+ herring, Clupea harengus and sprat, Sprattus sprattus) in the Bothnian Sea and in the Baltic Main Basin. The results suggest, that if the incidence of extreme weather conditions were to increase due to climatic changes, it would probably reduce the postsmolt survival of wild salmon populations. For improving the performance of hatchery-reared smolts, it could be useful to examine opportunities to produce smolts that are in their smolt traits and abilities more similar to the wild smolts described in this thesis.
Resumo:
During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.
Resumo:
Increased anthropogenic loading of nitrogen (N) and phosphorus (P) has led to an eutrophication problem in the Baltic Sea, and the spring bloom is a key component in the biological uptake of increased nutrient concentrations. The spring bloom in the Baltic Sea is dominated by both diatoms and dinoflagellates. However, the sedimentation of these groups is different: diatoms tend to sink to the sea floor at the end of the bloom, while dinoflagellates to a large degree are been remineralized in the euphotic zone. Understanding phytoplankton competition and species specific ecological strategies is thus of importance for assessing indirect effects of phytoplankton community composition on eutrophication problems. The main objective of this thesis was to describe some basic physiological and ecological characteristics of the main cold-water diatoms and dinoflagellates in the Baltic Sea. This was achieved by specific studies of: (1) seasonal vertical positioning, (2) dinoflagellate life cycle, (3) mixotrophy, (4) primary production, respiration and growth and (5) diatom silicate uptake, using cultures of common cold-water diatoms: Chaetoceros wighamii, C. gracilis, Pauliella taeniata, Thalassiosira baltica, T. levanderi, Melosira arctica, Diatoma tenuis, Nitzschia frigida, and dinoflagellates: Peridiniella catenata, Woloszynskia halophila and Scrippsiella hangoei. The diatoms had higher primary production capacity and lower respiration rate compared with the dinoflagellates. This difference was reflected in the maximum growth rate, which for the examined diatoms range from 0.6 to 1.2 divisions d-1, compared with 0.2 to 0.3 divisions d-1 for the dinoflagellates. Among diatoms there were species specific differences in light utilization and uptake of silicate, and C. wighamii had the highest carbon assimilation capacity and maximum silicate uptake. The physiological properties of diatoms and dinoflagellates were used in a model of the onset of the spring bloom: for the diatoms the model could predict the initiation of the spring bloom; S. hangoei, on the other hand, could not compete successfully and did not obtain positive growth in the model. The other dinoflagellates did not have higher growth rates or carbon assimilation rates and would thus probably not perform better than S. hangoei in the model. The dinoflagellates do, however, have competitive advantages that were not included in the model: motility and mixotrophy. Previous investigations has revealed that the chain-forming P. catenata performs diurnal vertical migration (DVM), and the results presented here suggest that active positioning in the water column, in addition to DVM, is a key element in this species' life strategy. There was indication of mixotrophy in S. hangoei, as it produced and excreted the enzyme leucine aminopeptidase (LAP). Moreover, there was indirect evidence that W. halophila obtains carbon from other sources than photosynthesis when comparing increase in cell numbers with in situ carbon assimilation rates. The results indicate that mixotrophy is a part of the strategy of vernal dinoflagellates in the Baltic Sea. There were also indications that the seeding of the spring bloom is very important for the dinoflagellates to succeed. In mesocosm experiments dinoflagellates could not compete with diatoms when their initial numbers were low. In conclusion, this thesis has provided new information about the basic physiological and ecological properties of the main cold-water phytoplankton in the Baltic Sea. The main phytoplankton groups, diatoms and dinoflagellates, have different physiological properties, which clearly separate their life strategies. The information presented here could serve as further steps towards better prognostic models of the effects of eutrophication in the Baltic Sea.