993 resultados para Scattering loss


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms.Methods: A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model base numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. Results: The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. Conclusions: The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3456441]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse anda femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy loss spectra of superconducting YBa2Cu3O6.9' Bi1.5Pb0.5Ca2.5Sr1.5Cu3O10+δ and Tl2CaBa2Cu3O8 obtained at primary electron energies in the 170–310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electron energy loss spectroscopic study of the formic acid dimer has shown bands centred around 7.2, 8.5, 9.8, and 11.1 eV, of which the first and the third bands are assigned to n- rc* transitions and the other two to n-n* transitions; similar transitions are found in the acetic acid dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brillouin scattering studies on single crystals of a charge-ordered manganite, Nd0.5Ca0.5MnO3, have been carried out for the first time. The spectra show two modes at similar to 27 GHz (B-mode) and 60 GHz (S-mode). The B-mode frequency and intensity from 300 K to 27 K, covering both the charge ordering transition at 250 K and the antiferromagnetic transition, at 170 K, exactly follow the same temperature dependence as the d.c. magnetic susceptibility. The B-mode is associated With bulk magnetic excitations and the S-mode with surface magnetic excitations of the manganite with ferromagnetic correlations. The study is strongly indicative of the presence of ferromagnetic inhomogeneities in the charge-ordered as well as antiferromagnetic phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopy can provide valuable information on the structure of disordered matter beyond that which is available through e.g. x-ray and neutron diffraction. X-ray Raman scattering is a non-resonant element-sensitive process which allows bulk-sensitive measurements of core-excited spectra from light-element samples. In this thesis, x-ray Raman scattering is used to study the local structure of hydrogen-bonded liquids and solids, including liquid water, a series of linear and branched alcohols, and high-pressure ice phases. Connecting the spectral features to the local atomic-scale structure involves theoretical references, and in the case of hydrogen-bonded systems the interpretation of the spectra is currently actively debated. The systematic studies of the intra- and intermolecular effects in alcohols, non-hydrogen-bonded neighbors in high-pressure ices, and the effect of temperature in liquid water are used to demonstrate different aspects of the local structure that can influence the near-edge spectra. Additionally, the determination of the extended x-ray absorption fine structure is addressed in a momentum-transfer dependent study. This work demonstrates the potential of x-ray Raman scattering for unique studies of the local structure of a variety of disordered light-element systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a widespread reporting habit of combining the outcomes for patients with rest pain (Fontaine III) and tissue loss (Fontaine IV) under the single category of critical leg ischaemia (CLI). This study focused on patients with ischaemic tissue loss treated with infrainguinal bypass surgery (IBS). All patients included in the study were treated at Helsinki University Central Hospital in 2000-2007. First, ulcer healing time after IBS and factors influencing healing time were prospectively assessed in 2 studies including 148 and 110 patients, respectively. Second,the results of redo IBS were retrospectively evaluated in 593 patients undergoing primary IBS for CLI with tissue loss . Third,long-term outcome were retrospectively analysed in 636 patients who underwent IBS for CLI with tissue loss . Fourth, the outcome of IBS was retrospectively compared with endovascular treatment (PTA) of the infrapopliteal arteries in 1023 CLI patients. Fifth, the influence multidrug resistant Pseudomans aeruginosa (MDR Pa) bacteria contamination in CLI patients treated with IBS was retropectively assessed. Sixty-four patients with positive MDR Pa -culture were matched with 64 MDR Pa - negative controls. Complete ulcer healing rate, including the ischemic ulcers and incisional wounds, was 40% at 6 months after IBS and 75% at one year. Diabetes was a risk factor for prolonged complete ulcer healing time. Ischaemic tissue lesions located in mid-and hindfoot healed poorly. At one year after IBS 50% of the patients were alive with salvaged leg and completely healed ulcers. The absence of gap between tertiary graft patency and leg salvage rates indicates the importance of a patent infrainguinal graft to save a leg with ischaemic tissue loss. Long-term survival for patients with ischaemic tissue loss was poor, 38% at 5 years. Only 30% of the patients were alive without amputation at 5 years. Several of the patient comorbidities increased independently the mortality risk; coronary artery disease, renal insufficiency, chronic obstructive lung disease and high age. When both PTA and bypass is feasible, infrapopliteal PTA as a first-line strategy is expected to achieve similar long-term results to bypass surgery in CLI when redo surgery is actively utilized. MDR Pa in a patient with CLI should be considered as a serious event with increased risk of early major amputation or death. Conclusion: Despite a successful infrainguinal bypass healing of the ischaemic ulcers and incisional wounds ulcer healing is a slow process especially in diabetics. Bypass surgery and PTA improve the outcome of the ischaemic leg but the mortality rate of the patients is high due to their severe comorbidities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In remote-sensing studies, particles that are comparable to the wavelength exhibit characteristic features in electromagnetic scattering, especially in the degree of linear polarization. These features vary with the physical properties of the particles, such as shape, size, refractive index, and orientation. In the thesis, the direct problem of computing the unknown scattered quantities using the known properties of the particles and the incident radiation is solved at both optical and radar spectral regions in a unique way. The internal electromagnetic fields of wavelength-scale particles are analyzed by using both novel and established methods to show how the internal fields are related to the scattered fields in the far zone. This is achieved by using the tools and methods that were developed specifically to reveal the internal field structure of particles and to study the mechanisms that relate the structure to the scattering characteristics of those particles. It is shown that, for spherical particles, the internal field is a combination of a forward propagating wave with the apparent wavelength determined by the refractive index of the particle, and a standing wave pattern with the apparent wavelength the same as for the incident wave. Due to the surface curvature and dielectric nature of the particle, the incident wave front undergoes a phase shift, and the resulting internal wave is focused mostly at the forward part of the particle similar to an optical lens. This focusing is also seen for irregular particles. It is concluded that, for both spherical and nonspherical particles, the interference at the far field between the partial waves that originate from these concentrated areas in the particle interior, is responsible for the specific polarization features that are common for wavelength-scale particles, such as negative values and local extrema in the degree of linear polarization, asymmetry of the phase function, and enhancement of intensity near the backscattering direction. The papers presented in this thesis solve the direct problem for particles with both simple and irregular shapes to demonstrate that these interference mechanisms are common for all dielectric wavelength-scale particles. Furthermore, it is shown that these mechanisms can be applied to both regolith particles in the optical wavelengths and hydrometeors at microwave frequencies. An advantage from this kind of study is that it does not matter whether the observation is active (e.g., polarimetric radar) or passive (e.g., optical telescope). In both cases, the internal field is computed for two mutually perpendicular incident polarizations, so that the polarization characteristics can then be analyzed according to the relation between these fields and the scattered far field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light scattering, or scattering and absorption of electromagnetic waves, is an important tool in all remote-sensing observations. In astronomy, the light scattered or absorbed by a distant object can be the only source of information. In Solar-system studies, the light-scattering methods are employed when interpreting observations of atmosphereless bodies such as asteroids, atmospheres of planets, and cometary or interplanetary dust. Our Earth is constantly monitored from artificial satellites at different wavelengths. With remote sensing of Earth the light-scattering methods are not the only source of information: there is always the possibility to make in situ measurements. The satellite-based remote sensing is, however, superior in the sense of speed and coverage if only the scattered signal can be reliably interpreted. The optical properties of many industrial products play a key role in their quality. Especially for products such as paint and paper, the ability to obscure the background and to reflect light is of utmost importance. High-grade papers are evaluated based on their brightness, opacity, color, and gloss. In product development, there is a need for computer-based simulation methods that could predict the optical properties and, therefore, could be used in optimizing the quality while reducing the material costs. With paper, for instance, pilot experiments with an actual paper machine can be very time- and resource-consuming. The light-scattering methods presented in this thesis solve rigorously the interaction of light and material with wavelength-scale structures. These methods are computationally demanding, thus the speed and accuracy of the methods play a key role. Different implementations of the discrete-dipole approximation are compared in the thesis and the results provide practical guidelines in choosing a suitable code. In addition, a novel method is presented for the numerical computations of orientation-averaged light-scattering properties of a particle, and the method is compared against existing techniques. Simulation of light scattering for various targets and the possible problems arising from the finite size of the model target are discussed in the thesis. Scattering by single particles and small clusters is considered, as well as scattering in particulate media, and scattering in continuous media with porosity or surface roughness. Various techniques for modeling the scattering media are presented and the results are applied to optimizing the structure of paper. However, the same methods can be applied in light-scattering studies of Solar-system regoliths or cometary dust, or in any remote-sensing problem involving light scattering in random media with wavelength-scale structures.