911 resultados para SMART cDNA
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
The ability to render objects invisible with a cloak that fits all objects and sizes is a long-standing goal for optical devices. Invisibility devices demonstrated so far typically comprise a rigid structure wrapped around an object to which it is fitted. Here we demonstrate smart metamaterial cloaking, wherein the metamaterial device not only transforms electromagnetic fields to make an object invisible, but also acquires its properties automatically from its own elastic deformation. The demonstrated device is a ground-plane microwave cloak composed of an elastic metamaterial with a broad operational band (10-12 GHz) and nearly lossless electromagnetic properties. The metamaterial is uniform, or perfectly periodic, in its undeformed state and acquires the necessary gradient-index profile, mimicking a quasi-conformal transformation, naturally from a boundary load. This easy-to-fabricate hybrid elasto-electromagnetic metamaterial opens the door to implementations of a variety of transformation optics devices based on quasi-conformal maps.
Resumo:
The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.
Resumo:
An alpha 2-adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet alpha 2-adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet alpha 2-adrenergic receptor and is consistent with the structure of other members of the family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the alpha 2-adrenergic ligand [3H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the alpha 2B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet alpha 2-adrenergic receptor (alpha 2A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective alpha-adrenergic ligands.
Resumo:
Screening of a human placenta lambda gt11 library has led to the isolation of the cDNA for the human beta 1-adrenergic receptor (beta 1AR). Used as the probe was the human genomic clone termed G-21. This clone, which contains an intronless gene for a putative receptor, was previously isolated by virtue of its cross hybridization with the human beta 2-adrenergic receptor (beta 2AR). The 2.4-kilobase cDNA for the human beta 1AR encodes a protein of 477 amino acid residues that is 69% homologous with the avian beta AR but only 54% homologous with the human beta 2AR. This suggests that the avian gene encoding beta AR and the human gene encoding beta 1AR evolved from a common ancestral gene. RNA blot analysis indicates a message of 2.5 kilobases in rat tissues, with a pattern of tissue distribution consistent with beta 1AR binding. This pattern is quite distinct from the pattern obtained when the beta 2AR cDNA is used as a probe. Expression of receptor protein in Xenopus laevis oocytes conveys adenylate cyclase responsiveness to catecholamines with a typical beta 1AR specificity. This contrasts with the typical beta 2 subtype specificity observed when the human beta 2AR cDNA is expressed in this system. Mammalian beta 1AR and beta 2AR are thus products of distinct genes, both of which are apparently related to the putative G-21 receptor.
Resumo:
We have isolated and sequenced a cDNA encoding the human beta 2-adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster beta 2-adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. We have localized the gene for the beta 2-adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor.
Resumo:
info:eu-repo/semantics/submittedForPublication
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides that act as important components of an innate immune system. Here, we describe a novel “shotgun” skin peptide precursor cloning technique that facilitates rapid access to these genetically encoded molecules and effects their subsequent identification and structural characterization from the secretory peptidome. Adopting this approach on a skin secretion-derived library from a hitherto unstudied Chinese species of frog, we identified a family of novel antimicrobial peptide homologs, named pelophylaxins, that belong to previously identified families (ranatuerins, brevinins and temporins) found predominantly in the skin secretions from frogs of the genus Rana. These data further substantiate the scientifically robust nature of applying parallel transcriptome and peptidome analyses on frog defensive skin secretions that can be obtained in a non-invasive, non-destructive manner. In addition, the present data illustrate that rapid structural characterization of frog skin secretion peptides can be achieved from an unstudied species without prior knowledge of primary structures of endogenous peptides.
Resumo:
Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.
Resumo:
Tryptophyllins are a heterogenous group of amphibian skin peptides originally identified in skin extracts of Neotropical leaf frogs, Phyllomedusa sp., by chemical means. Until now, biosynthetic precursor structure and biological activity remain unreported. Here we describe the isolation of a novel, post-translationally modified tryptophyllin, Lys-Pro-Hyp-Ala-Trp-Val-Pro.amide (PdT-1), from the skin secretion of the Mexican leaf frog, Pachymedusa dacnicolor. Using a 3'- and 5'-RACE strategy and an in vitro skin cDNA library, the PdT-1-encoding precursor was cloned and found to consist of an open-reading frame of 62 amino acids with a single copy of PdT-1 located towards the C-terminus. A synthetic replicate of PdT-1 was found to be a potent myoactive agent, relaxing mammalian arterial smooth muscle and contracting small intestinal smooth muscle at nanomolar concentrations. PdT-1 is thus the first amphibian skin tryptophyllin to be pharmacologically characterized and the first whose precursor cDNA has been cloned.
Resumo:
The defensive skin secretions of many amphibians contain a wide spectrum of biologically active compounds, particularly antimicrobial peptides that act as a first line of defence against bacterial infection. Here we describe for the first time the identification of three novel dermaseptin-related peptides (dermaseptins sVI–sVIII) whose primary structures were deduced from cDNAs cloned from a library constructed from lyophilised skin secretion of the South American hylid frog, Phyllomedusa sauvagei. The molecular masses of each were subsequently confirmed by interrogation of archived LC/MS files of fractionated skin secretion followed by automated Edman degradation sequencing. The heterogeneity of primary structures encountered in amphibian skin antimicrobial peptides may in part be explained by individual variation—a factor essential for selective functional molecular evolution and perhaps, ultimately in speciation.
Resumo:
The fluoropyrimidine 5-Fluorouracil (5-FU) is widely used in the treatment of cancer. To identify novel downstream mediators of tumor cell response to 5-FU, we used DNA microarray technology to identify genes that are transcriptionally activated by 5-FU treatment in the MCF-7 breast cancer cell line. Of 2400 genes analyzed, 619 were up-regulated by >3-fold. Highly up-regulated genes (>6-fold) with signal intensities of >3000 were analyzed by Northern blot. Genes that were consistently found to be up-regulated were spermine/spermidine acetyl transferase (SSAT), annexin II, thymosin-beta-10, chaperonin-10, and MAT-8. Treatment of MCF-7 cells with the antifolate tomudex and DNA-damaging agent oxaliplatin also resulted in up-regulation of each of these targets. The 5-FU-induced activation of MAT-8, thymosin-beta-10, and chaperonin-10 was abrogated by inactivation of p53 in MCF-7 cells, whereas induction of SSAT and annexin II was significantly reduced in the absence of p53. Moreover, each of these genes contained more than one potential p53-binding site, suggesting that p53 may play an important regulatory role in 5-FU-induced expression of these genes. In addition, we found that basal expression levels of SSAT, annexin II, thymosin beta-10, and chaperonin-10 were increased (by approximately 2-3-fold), and MAT-8 expression dramatically increased (by approximately 10-fold) in a 5-FU-resistant colorectal cancer cell line (H630-R10) compared with the parental H630 cell line, suggesting these genes may be useful biomarkers of resistance. These results demonstrate the potential of DNA microarrays to identify novel genes involved in mediating the response of tumor cells to chemotherapy.