909 resultados para SCREW-SENSE INVERSION
Resumo:
The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.
Resumo:
This paper presents a matrix inversion architecture based on the novel Modified Squared Givens Rotations (MSGR) algorithm, which extends the original SGR method to complex valued data, and also corrects erroneous results in the original SGR method when zeros occur on the diagonal of the matrix either initially or during processing. The MSGR algorithm also avoids complex dividers in the matrix inversion, thus minimising the complexity of potential real-time implementations. A systolic array architecture is implemented and FPGA synthesis results indicate a high-throughput low-latency complex matrix inversion solution. © 2008 IEEE.
Resumo:
Abstract This study explored the effects that the incorporation of nature of science (NoS) activities in the primary science classroom had on children’s perceptions and understanding of science. We compared children’s ideas in four classes by inviting them to talk, draw and write about what science meant to them: two of the classes were taught by ‘NoS’ teachers who had completed an elective nature of science (NoS) course in the final year of their Bachelor of Education (B.Ed) degree. The ‘non-NoS’ teachers who did not attend this course taught the other two classes. All four teachers had graduated from the same initial teacher education institution with similar teaching grades and all had carried out the same science methods course during their B.Ed programme. We found that children taught by the teachers who had been NoS-trained developed more elaborate notions of nature of science, as might be expected. More importantly, their reflections on science and their science lessons evidenced a more in-depth and sophisticated articulation of the scientific process in terms of scientists “trying their best” and “sometimes getting it wrong” as well as “getting different answers”. Unlike children from non-NoS classes, those who had engaged in and reflected on NoS activities talked about their own science lessons in the sense of ‘doing science’. These children also expressed more positive attitudes about their science lessons than those from non-NoS classes. We therefore suggest that there is added value in including NoS activities in the primary science curriculum in that they seem to help children make sense of science and the scientific process, which could lead to improved attitudes towards school science. We argue that as opposed to considering the relevance of school science only in terms of children’s experience, relevance should include relevance to the world of science, and NoS activities can help children to link school science to science itself.
Resumo:
For high-technology entrepreneurs, attaining an appropriate level of investment to support new ventures is challenging as substantial investment is usually required prior to revenue generation. Consequently, entrepreneurs must present their firms as investment ready in the context of an uncertain market response and an absence of any trading history. Gaining tenancy within a business incubator can be advantageous to this process given that placement enhances entrepreneurial contact with potential investors whilst professional client advisors (CAs) use their expertise to assist in the development of a credible business plan. However, for the investment proposal to be successful, it must make sense to fund managers despite their lack of technological expertise and product knowledge. Thus, this article explores how incubator CAs and entrepreneurs act in concert to mould innovative ideas into plausible business plans that make sense to venture fund investors. To illustrate this process, we draw upon empirical evidence which suggests that CAs act as sense makers between venture fund managers (VFMs) and high-technology entrepreneurs, yet their role and influence appears undervalued. These findings have implications for entrepreneurial access to much needed funding and also for the identification of investment opportunities for VFMs. © 2011 Taylor & Francis.
Resumo:
We characterize the structural transitions in an initially homeotropic bent-rod nematic liquid crystal excited by ac fields of frequency f well above the dielectric inversion point f(i). From the measured principal dielectric constants and electrical conductivities of the compound, the Carr-Helfrich conduction regime is anticipated to extend into the sub-megahertz region. Periodic patterned states occur through secondary bifurcations from the Freedericksz distorted state. An anchoring transition between the bend Freedericksz (1317) and degenerate planar (DP) states is detected. The BF state is metastable well above the Freedericksz threshold and gives way to the DP state, which persists in the field-off condition for several hours. Numerous +1 and -1 umbilics form at the onset of BF distortion, the former being largely of the chiral type. They survive in the DP configuration as linear defects, nonsingular in the core. In the BF regime, not far from fi, periodic Williams-like domains form around the umbilics; they drift along the director easy axis right from their onset. With increasing f, the wave vector of the periodic domains switches from parallel to normal disposition with respect to the c vector. Well above fi, a broadband instability is found.