990 resultados para Riemann Problem
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.
Resumo:
In this thesis the current status and some open problems of noncommutative quantum field theory are reviewed. The introduction aims to put these theories in their proper context as a part of the larger program to model the properties of quantized space-time. Throughout the thesis, special focus is put on the role of noncommutative time and how its nonlocal nature presents us with problems. Applications in scalar field theories as well as in gauge field theories are presented. The infinite nonlocality of space-time introduced by the noncommutative coordinate operators leads to interesting structure and new physics. High energy and low energy scales are mixed, causality and unitarity are threatened and in gauge theory the tools for model building are drastically reduced. As a case study in noncommutative gauge theory, the Dirac quantization condition of magnetic monopoles is examined with the conclusion that, at least in perturbation theory, it cannot be fulfilled in noncommutative space.
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
Habitat distruction and hunting for dissection specimens have taken their toll. But there may be other, subtle factors causing loss of amphibian populations.
Resumo:
We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.
Resumo:
We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.
Resumo:
A general direct technique of solving a mixed boundary value problem in the theory of diffraction by a semi-infinite plane is presented. Taking account of the correct edge-conditions, the unique solution of the problem is derived, by means of Jones' method in the theory of Wiener-Hopf technique, in the case of incident plane wave. The solution of the half-plane problem is found out in exact form. (The far-field is derived by the method of steepest descent.) It is observed that it is not the Wiener-Hopf technique which really needs any modification but a new technique is certainly required to handle the peculiar type of coupled integral equations which the Wiener-Hopf technique leads to. Eine allgemeine direkte Technik zur Lösung eines gemischten Randwertproblems in der Theorie der Beugung an einer halbunendlichen Ebene wird vorgestellt. Unter Berücksichtigung der korrekten Eckbedingungen wird mit der Methode von Jones aus der Theorie der Wiener-Hopf-Technik die eindeutige Lösung für den Fall der einfallenden ebenen Welle hergeleitet. Die Lösung des Halbebenenproblems wird in exakter Form angegeben. (Das Fernfeld wurde mit der Methode des steilsten Abstiegs bestimmt.) Es wurde bemerkt, daß es nicht die Wiener-Hopf-Technik ist, die wirklich irgend welcher Modifikationen bedurfte. Gewiß aber wird eine neue Technik zur Behandlung des besonderen Typs gekoppelter Integralgleichungen benötigt, auf die die Wiener-Hopf-Technik führt.
Resumo:
An inverse problem for the wave equation is a mathematical formulation of the problem to convert measurements of sound waves to information about the wave speed governing the propagation of the waves. This doctoral thesis extends the theory on the inverse problems for the wave equation in cases with partial measurement data and also considers detection of discontinuous interfaces in the wave speed. A possible application of the theory is obstetric sonography in which ultrasound measurements are transformed into an image of the fetus in its mother's uterus. The wave speed inside the body can not be directly observed but sound waves can be produced outside the body and their echoes from the body can be recorded. The present work contains five research articles. In the first and the fifth articles we show that it is possible to determine the wave speed uniquely by using far apart sound sources and receivers. This extends a previously known result which requires the sound waves to be produced and recorded in the same place. Our result is motivated by a possible application to reflection seismology which seeks to create an image of the Earth s crust from recording of echoes stimulated for example by explosions. For this purpose, the receivers can not typically lie near the powerful sound sources. In the second article we present a sound source that allows us to recover many essential features of the wave speed from the echo produced by the source. Moreover, these features are known to determine the wave speed under certain geometric assumptions. Previously known results permitted the same features to be recovered only by sequential measurement of echoes produced by multiple different sources. The reduced number of measurements could increase the number possible applications of acoustic probing. In the third and fourth articles we develop an acoustic probing method to locate discontinuous interfaces in the wave speed. These interfaces typically correspond to interfaces between different materials and their locations are of interest in many applications. There are many previous approaches to this problem but none of them exploits sound sources varying freely in time. Our use of more variable sources could allow more robust implementation of the probing.
Resumo:
The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.
Resumo:
A neural network approach for solving the two-dimensional assignment problem is proposed. The design of the neural network is discussed and simulation results are presented. The neural network obtains 10-15% lower cost placements on the examples considered, than the adjacent pairwise exchange method.
Resumo:
Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.