851 resultados para Refinement of (SOR1NM2)
Resumo:
Background. The pharmacokinetics and pharmacodynamics of lumefantrine, a component of the most widely used treatment for malaria, artemether-lumefantrine, has not been adequately characterized in young children. Methods. Capillary whole-blood lumefantrine concentration and treatment outcomes were determined in 105 Ugandan children, ages 6 months to 2 years, who were treated for 249 episodes of Plasmodium falciparum malaria with artemether-lumefantrine. Results. Population pharmacokinetics for lumefantrine used a 2-compartment open model with first-order absorption. Age had a significant positive correlation with bioavailability in a model that included allometric scaling. Children not receiving trimethoprim-sulfamethoxazole with capillary whole blood concentrations <200 ng/mL had a 3-fold higher hazard of 28-day recurrent parasitemia, compared with those with concentrations >200 ng/mL (P =. 0007). However, for children receiving trimethoprim-sulfamethoxazole, the risk of recurrent parasitemia did not differ significantly on the basis of this threshold. Day 3 concentrations were a stronger predictor of 28-day recurrence than day 7 concentrations. Conclusions. We demonstrate that age, in addition to weight, is a determinant of lumefantrine exposure, and in the absence of trimethoprim-sulfamethoxazole, lumefantrine exposure is a determinant of recurrent parasitemia. Exposure levels in children aged 6 months to 2 years was generally lower than levels published for older children and adults. Further refinement of artemether-lumefantrine dosing to improve exposure in infants and very young children may be warranted. © 2016 The Author.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The synthesis and optimization of two Li-ion solid electrolytes were studied in this work. Different combinations of precursors were used to prepare La0.5Li0.5TiO3 via mechanosynthesis. Despite the ability to form a perovskite phase by the mechanochemical reaction it was not possible to obtain a pure La0.5Li0.5TiO3 phase by this process. Of all the seven combinations of precursors and conditions tested, the one where La2O3, Li2CO3 and TiO2 were milled for 480min (LaOLiCO-480) showed the best results, with trace impurity phases still being observed. The main impurity phase was that of La2O3 after mechanosynthesis (22.84%) and Li2TiO3 after calcination (4.20%). Two different sol-gel methods were used to substitute boron on the Zr-site of Li1+xZr2-xBx(PO4)3 or the P-site of Li1+6xZr2(P1-xBxO4)3, with the doping being achieved on the Zr-site using a method adapted from Alamo et al (1989). The results show that the Zr-site is the preferential mechanism for B doping of LiZr2(PO4)3 and not the P-site. Rietveld refinement of the unit-cell parameters was performed and it was verified by consideration of Vegard’s law that it is possible to obtain phase purity up to x = 0.05. This corresponds with the phases present in the XRD data, that showed the additional presence of the low temperature (monoclinic) phase for the powder sintered at 1200ºC for 12h of compositions with x ≥ 0.075. The compositions inside the solid solution undergo the phase transition from triclinic (PDF#01-074-2562) to rhombohedral (PDF#01-070-6734) when heating from 25 to 100ºC, as reported in the literature for the base composition. Despite several efforts, it was not possible to obtain dense pellets and with physical integrity after sintering, requiring further work in order to obtain dense pellets for the electrochemical characterisation of Li Zr2(PO4)3 and Li1.05Zr1.95B0.05(PO4)3.
Resumo:
Coronary heart disease is a major cause of morbidity and mortality worldwide. Percutaneous coronary intervention (PCI) has become the most widely used method of coronary artery revascularisation. The use of stents to hold open atherosclerosis induced arterial narrowing has significantly reduced elastic recoil and acute vessel occlusion following balloon angioplasty. However, bare metal stents have been associated with in-stent restenosis attributed to vascular smooth muscle cell (VSMC) hyperplasia and excessive neointimal formation. The resultant luminal renarrowing may manifest clinically with the return of symptoms such as chest pain or shortness of breath. The development of drug eluting stents has significantly reduced the incidence of in-stent restenosis (ISR). Unfortunately the antiproliferative medications used not only inhibit VSMC proliferation but also re-endothelialisation of the stented vessel. In addition, the drug impregnated polymer coating has been associated with a chronic inflammatory response within the vessel wall predisposing patients to stent thrombosis. Thus the identification of novel therapies which promote vessel healing without excessive proliferative or inflammatory response may improve long term outcome and reduce the need for repeated revascularisation. MicroRNAs (miRs) are short (18-25 nucleotide) non-coding RNAs acting to regulate gene expression. By binding to the 3’untranslated region of mRNA they act to fine tune gene expression either by mRNA degradation or translational repression. Originally identified in coordinating tissue development microRNAs have also been shown to play important roles coordinating the inflammatory response and in numerous cardiovascular diseases. MiR-21 has been identified in human atherosclerotic plaques, arteriosclerosis obliterans and abdominal aortic aneurysms. In addition, its up regulation has been documented in preclinical models of vascular injury. This study sought to identify the role of miR-21 in the development of ISR. Utilising a small animal model of stenting and in vitro techniques, we sought to investigate its influence upon VSMC and immune cell response following stenting. 19 The refinement of a murine stenting model within the Baker laboratory and the electrochemical dissolution of the metal stent from within harvested vascular tissues significantly improved the ability to perform detailed histological analysis. In addition, identification of miRNAs using in situ hybridisation was achieved for the first time within stented tissue. Neointimal formation and ISR was significantly reduced in mice in which miR-21 had been genetically deleted. In addition, neointimal composition was found to be altered in miR-21 KO mice with reductions in VSMC and elastin content demonstrated. Importantly, no difference in re-endothelialisation was observed. In vitro analysis demonstrated that VSMCs from miR-21 KO mice had both reduced proliferative and migratory capacity following platelet derived growth factor stimulation. Molecular analysis revealed that these differences may, at least in part, be due to de-repression of programmed cell death 4 (PDCD4). PDCD4 is a known miR-21 target within VSMCs implicated in the suppression of proliferation and promotion of apoptosis. Unfortunately, initial attempts at antimiR mediated knockdown of miR-21 in vivo, failed to produce a similar change in the suppression of ISR. Furthermore, a significant alteration in macrophage polarisation state within the neointima of miR-21 WT and KO mice was noted. Immunohistochemical staining revealed a preponderance of anti-inflammatory M2 macrophages in KO mice. Analysis of bone marrow derived macrophages from miR-21 KO mice demonstrated an increased level of the peroxisome proliferation activating receptor-γ (PPARγ) which facilitates M2 polarisation. Importantly, significant alterations in numerous pro-inflammatory cytokines, which also have mitogenic effects, were also found following genetic deletion of miR-21. In Summary, this is the first study to look at miRs in the development of ISR. MiR-21 plays an important role in the development of ISR by influencing the proliferative response of VSMCs and modulating the immune response following stent deployment. Further attempts to modulate miR-21 expression following PCI may reduce ISR and the need for repeat revascularisation while also reducing the risk of stent thrombosis.
Resumo:
The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.
Resumo:
It is just over 20 years since Adobe's PostScript opened a new era in digital documents. PostScript allows most details of rendering to be hidden within the imaging device itself, while providing a rich set of primitives enabling document engineers to think of final-form rendering as being just a sophisticated exercise in computer graphics. The refinement of the PostScript model into PDF has been amazingly successful in creating a near-universal interchange format for complex and graphically rich digital documents but the PDF format itself is neither easy to create nor to amend. In the meantime a whole new world of digital documents has sprung up centred around XML-based technologies. The most widespread example is XHTML (with optional CSS styling) but more recently we have seen Scalable Vector Graphics (SVG) emerge as an XML-based, low-level, rendering language with PostScript-compatible rendering semantics. This paper surveys graphically-rich final-form rendering technologies and asks how flexible they can be in allowing adjustments to be made to final appearance without the need for regenerating a whole page or an entire document. Particular attention is focused on the relative merits of SVG and PDF in this regard and on the desirability, in any document layout language, of being able to manipulate the graphic properties of document components parametrically, and at a level of granularity smaller than an entire page.
Resumo:
Instructional methods employed by teachers of singing are mostly drawn from personal experience, personal reflections, and methods encountered in their own voice training (Welch & Howard, 2005). Even in Academia, singing pedagogy is one of the few disciplines in which research of teaching/learning practice efficacy has not been established (Crocco, et al., 2016). This dissertation argues the reason for this deficit is a lack of operationalization of constructs in singing, which, to date has not been undertaken. The researcher addresses issues of paradigm, epistemology, and methodology to suggest an appropriate model of experimental research towards the assessment of teaching/learning practice efficacy. A study was conducted adapting attentional focus research methodologies to test the effect of attentional focus on singing voice quality in adult novice singers. Based on previous attentional focus studies, it was hypothesized that external focus conditions would result in superior singing voice quality than internal focus conditions. While the hypothesis was partially supported by the data, the researcher welcomed refinement of the suggested research model. It is hoped that new research methodologies will emerge to investigate singing phenomena, yielding data that may be used towards the development of evidence-based frameworks for singing training.
Resumo:
This paper presents the general framework of an ecological model of the English Channel. The model is a result of combining a physical sub-model with a biological one. in the physical submodel, the Channel is divided into 71 boxes and water fluxes between them are calculated automatically. A 2-layer, vertical thermohaline model was then linked with the horizontal circulation scheme. This physical sub-model exhibits thermal stratification in the western Channel during spring and summer and haline stratification in the Bay of Seine due to high flow rates from the river. The biological sub-model takes 2 elements, nitrogen and silicon, into account and divides phytoplankton into diatoms and dinoflagellates. Results from this ecological model emphasize the influence of stratification on chlorophyll a concentrations as well as on primary production. Stratified waters appear to be much less productive than well-mixed ones. Nevertheless, when simulated production values are compared with literature data, calculated production is shown to be underestimated. This could be attributed to a lack of refinement of the 2-layer box-model or processes omitted from the biological model, such as production by nanoplankton.
Resumo:
The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.
Resumo:
An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.
Resumo:
An early decision market is governed by rules that allow each student to apply to (at most) one college and require the student to attend this college if admitted. This market is ubiquitous in college admissions in the United States. We model this market as an extensive-form game of perfect information and study a refinement of subgame perfect equilibrium (SPE) that induces undominated Nash equilibria in every subgame (SPUE). Our main result shows that this game can be used to define a decentralized matching mechanism that weakly Pareto dominates student-proposing deferred acceptance.
Resumo:
A confirmatory attempt is made to assess the validity of a hierarchic structural model of fears. Using a sample comprising 1,980 adult volunteers in Portugal, the present study set out to delineate the multidimensional structure and hierarchic organization of a large set of feared stimuli by contrasting a higher-order model comprising general fear at the highest level against a first-order model and a unitary fear model. Following a refinement of the original model, support was found for a five-factor model on a first-order level, namely (1) Social fears, (2) Agoraphobic fears, (3) Fears of bodily injury, death and illness, (4) Fears of display to aggressive scenes, and (5) Harmless animals fears. These factors in turn loaded on a General fear factor at the second-order level. However, the firstorder model was as parsimonious as a hierarchic higher-order model. The hierarchic model supports a quantitative hierarchic approach which decomposes fear disorders into agoraphobic, social, and specific (animal and bloodinjury) fears.
Resumo:
Within the major therapeutic paradigms, observational instruments have been developed to assess orientation-specific interventions or processes. However, to date, no such instrument exists to assess existential practices. Recent research indicates the key practices of existential therapists, and forms an empirical basis on which to develop an observatory grid. This paper describes the development of such a grid, and its exploratory testing with eight clients of four Portuguese existential psychotherapists. A total of 32 sessions were observed and both speaking turn and whole-session analysis showed that it was feasible to assess existential therapy using the instrument, although psychometric findings recommend further refinement of the tool. Session-rating data suggest that the chief practices applied by existential therapists were relational, followed by the use of hermeneutic interventions and reformulations. Interventions based on phenomenological and existential assumptions were observable in practice but limited in frequency. Further refinements and developments of the observational grid, together with additional research – using a range of therapists from different schools of existential therapy – are recommended.
Resumo:
Expression patterns of group I (mGluR1α and mGluR5)and group II (mGluR2/3) metabotropic glutamate receptor subtypes were examined immunocytochemically in the trigeminal system of mice during the first 3 weeks of postnatal development, when somatotopic whisker representations are sequentially established from brainstem through thalamus to cerebral cortex. Immunostaining for all three epitopes formed whisker-related patterns in the trigeminal nuclei from postnatal day (P) 0, in the ventral posterior thalamic nucleus from P2, and in the posteromedial barrel subfield of somatosensory cortex (SI) from P4. The appearance of whisker-related patterns was preceded by increased levels of immunostaining of the neuropil, which subsequently declined from the trigeminal nuclei upward. In SI, mGluR1α-positive neurons were observed in all cortical layers from P2. mGluR5 was localized in neurons, glial cells, and neuropil from P2. mGluR2/3 immunostaining was distributed only in the neuropil at all ages. The three receptor subtypes showed moderate to high expression in deep layer V throughout development. Transient expression peaked in the hollows of layer IV barrels from P4 to P9, and then fell off as expression increased in supragranular layers from P14 to P21. The deep aspect of the cortical subplate (layer VIb) showed dense mGluR5 and less dense mGluR1α immunostaining throughout development. Up-regulation of expression of group I and II mGluRs is correlated with the growth and refinement of connectivity and the establishment of somatotopic patterns in the three main relay stations of the trigeminal system. This finding suggests roles for mGluRs in the early processing of sensory information and in developmental plasticity.
Resumo:
An early decision market is governed by rules that allow each student to apply to (at most) one college and require the student to attend this college if admitted. This market is ubiquitous in college admissions in the United States. We model this market as an extensive-form game of perfect information and study a refinement of subgame perfect equilibrium (SPE) that induces undominated Nash equilibria in every subgame (SPUE). Our main result shows that this game can be used to define a decentralized matching mechanism that weakly Pareto dominates student-proposing deferred acceptance.