995 resultados para Quantum computing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review here classical Bogomolnyi bounds, and their generalisation to supersymmetric quantum field theories by Witten and Olive. We also summarise some recent work by several people on whether such bounds are saturated in the quantised theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing internet computing resource, Biomolecules Segment Display Device (BSDD), has been updated with several additional useful features. An advanced option is provided to superpose the structural motifs obtained from a search on the Protein Data Bank (PDB) in order to see if the three-dimensional structures adopted by identical or similar sequence motifs are the same. Furthermore, the options to display structural aspects like inter- and intra-molecular interactions, ion-pairs, disulphide bonds, etc. have been provided.The updated resource is interfaced with an up-to-date copy of the public domain PDB as well as 25 and 90% non-redundant protein structures. Further, users can upload the three-dimensional atomic coordinates (PDB format) from the client machine. A free molecular graphics program, JMol, is interfaced with it to display the three-dimensional structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The routine use of proton NMR for the visualization of enantiomers, aligned in the chiral liquid crystal solvent poly-γ-benzyl-l-glutamate (PBLG), is restricted due to severe loss of resolution arising from large number of pair wise interaction of nuclear spins. In the present study, we have designed two experimental techniques for their visualization utilizing the natural abundance 13C edited selective refocusing of single quantum (CH-SERF) and double quantum (CH-DQSERF) coherences. The methods achieve chiral discrimination and aid in the simultaneous determination of homonuclear couplings between active and passive spins and heteronuclear couplings between the excited protons and the participating 13C spin. The CH-SERF also overcomes the problem of overlap of central transitions of the methyl selective refocusing (SERF) experiment resulting in better chiral discrimination. Theoretical description of the evolution of magnetization in both the sequences has been discussed using polarization operator formalism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effectiveness evaluation of aerospace fault-tolerant computing systems used in a phased-mission environment is rather tricky and difficult because of the interaction of its several degraded performance levels with the multiple objectives of the mission and the use environment. Part I uses an approach based on multiobjective phased-mission analysis to evaluate the effectiveness of a distributed avionics architecture used in a transport aircraft. Part II views the computing system as a multistate s-coherent structure. Lower bounds on the probabilities of accomplishing various levels of performance are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonics is a recently emerged technology that enables the compression of electromagnetic waves into miniscule metallic structures, thus enabling the focusing and routing of light on the nanoscale. Plasmonic waveguides can be used to miniaturise the size of integrated chip circuits while increasing the data transmission speed. Plasmonic waveguides are used to route the plasmons around a circuit and are a major focus of this thesis. Also, plasmons are highly sensitive to the surrounding dielectric environment. Using this property we have experimentally realised a refractive index sensor to detect refractive index change in solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many grand unified theories (GUT's) predict non-Abelian monopoles which are sources of non-Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological obstructions to the global implementation of the action of the "unbroken symmetry group" H on a classical test particle in the field of such a monopole. In this paper, the existence of similar topological obstructions to the definition of H action on the fields in such a monopole sector, as well as on the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail. Some subgroups of H which can be globally realized as groups of automorphisms are identified. We also discuss the application of our analysis to the SU(5) GUT and show in particular that the non-Abelian monopoles of that theory break color and electroweak symmetries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional multichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a low-frequency noise-power spectrum proportional to -ln(Ω)/Ω, and (ii) a dispersive capacitative impedance proportional to tanh(√iΩ )/ √iΩ. A deep connection to the quantum Brownian motion with linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efforts of combining quantum theory with general relativity have been great and marked by several successes. One field where progress has lately been made is the study of noncommutative quantum field theories that arise as a low energy limit in certain string theories. The idea of noncommutativity comes naturally when combining these two extremes and has profound implications on results widely accepted in traditional, commutative, theories. In this work I review the status of one of the most important connections in physics, the spin-statistics relation. The relation is deeply ingrained in our reality in that it gives us the structure for the periodic table and is of crucial importance for the stability of all matter. The dramatic effects of noncommutativity of space-time coordinates, mainly the loss of Lorentz invariance, call the spin-statistics relation into question. The spin-statistics theorem is first presented in its traditional setting, giving a clarifying proof starting from minimal requirements. Next the notion of noncommutativity is introduced and its implications studied. The discussion is essentially based on twisted Poincaré symmetry, the space-time symmetry of noncommutative quantum field theory. The controversial issue of microcausality in noncommutative quantum field theory is settled by showing for the first time that the light wedge microcausality condition is compatible with the twisted Poincaré symmetry. The spin-statistics relation is considered both from the point of view of braided statistics, and in the traditional Lagrangian formulation of Pauli, with the conclusion that Pauli's age-old theorem stands even this test so dramatic for the whole structure of space-time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research studied distributed computing of all-to-all comparison problems with big data sets. The thesis formalised the problem, and developed a high-performance and scalable computing framework with a programming model, data distribution strategies and task scheduling policies to solve the problem. The study considered storage usage, data locality and load balancing for performance improvement in solving the problem. The research outcomes can be applied in bioinformatics, biometrics and data mining and other domains in which all-to-all comparisons are a typical computing pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a microscopic model for calculating the AC conductivity of a finite length line junction made up of two counter-or co-propagating single mode quantum Hall edges with possibly different filling fractions. The effect of density-density interactions and a local tunneling conductance (sigma) between the two edges is considered. Assuming that sigma is independent of the frequency omega, we derive expressions for the AC conductivity as a function of omega, the length of the line junction and other parameters of the system. We reproduce the results of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (omega -> 0), and generalize those results for an interacting system. As a function of omega, the AC conductivity shows significant oscillations if sigma is small; the oscillations become less prominent as sigma increases. A renormalization group analysis shows that the system may be in a metallic or an insulating phase depending on the strength of the interactions. We discuss the experimental implications of this for the behavior of the AC conductivity at low temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.