970 resultados para Quantum Circuit
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
Given the urgence of a new paradigm in wireless digital trasmission which should allow for higher bit rate, lower latency and tigher delay constaints, it has been proposed to investigate the fundamental building blocks that at the circuital/device level, will boost the change towards a more efficient network architecture, with high capacity, higher bandwidth and a more satisfactory end user experience. At the core of each transciever, there are inherently analog devices capable of providing the carrier signal, the oscillators. It is strongly believed that many limitations in today's communication protocols, could be relieved by permitting high carrier frequency radio transmission, and having some degree of reconfigurability. This led us to studying distributed oscillator architectures which work in the microwave range and possess wideband tuning capability. As microvave oscillators are essentially nonlinear devices, a full nonlinear analyis, synthesis, and optimization had to be considered for their implementation. Consequently, all the most used nonlinear numerical techniques in commercial EDA software had been reviewed. An application of all the aforementioned techniques has been shown, considering a systems of three coupled oscillator ("triple push" oscillator) in which the stability of the various oscillating modes has been studied. Provided that a certain phase distribution is maintained among the oscillating elements, this topology permits a rise in the output power of the third harmonic; nevertheless due to circuit simmetry, "unwanted" oscillating modes coexist with the intenteded one. Starting with the necessary background on distributed amplification and distributed oscillator theory, the design of a four stage reverse mode distributed voltage controlled oscillator (DVCO) using lumped elments has been presented. All the design steps have been reported and for the first time a method for an optimized design with reduced variations in the output power has been presented. Ongoing work is devoted to model a wideband DVCO and to implement a frequency divider.
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
Anàlisi del fenomen cultural creat al voltant de J.R.R. Tolkien, l'autor d'El Senyor dels Anells, tot emprant el model del Circuit de la Cultura (Du Gay et als). La recerca se centra en el Consum: els fans i les fans de Tolkien i de la trilogia cinematogràfica 'The Lord of the Rings': tolkiendili i ringers.
Resumo:
The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies
Resumo:
Semiconductor nanoparticles, such as quantum dots (QDs), were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe) QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells), giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM) is optimal for bioimaging, whereas a high concentration (200 μM CdTe) could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.
Resumo:
Es descriu l'aproximació de Capes Atòmiques dins de la teoria de la Semblança Molecular Quàntica. Partint només de dades teòriques, s'ha trobat una relació entre estructura molecular i activitat biològica per a diversos conjunts de molècules. Es descriuen els aspectes teòrics de la Semblança Molecular Quàntica i alguns exemples d'aplicació
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed