904 resultados para Pruning algorithms
Resumo:
The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.
Resumo:
Recently, probability models on rankings have been proposed in the field of estimation of distribution algorithms in order to solve permutation-based combinatorial optimisation problems. Particularly, distance-based ranking models, such as Mallows and Generalized Mallows under the Kendall’s-t distance, have demonstrated their validity when solving this type of problems. Nevertheless, there are still many trends that deserve further study. In this paper, we extend the use of distance-based ranking models in the framework of EDAs by introducing new distance metrics such as Cayley and Ulam. In order to analyse the performance of the Mallows and Generalized Mallows EDAs under the Kendall, Cayley and Ulam distances, we run them on a benchmark of 120 instances from four well known permutation problems. The conducted experiments showed that there is not just one metric that performs the best in all the problems. However, the statistical test pointed out that Mallows-Ulam EDA is the most stable algorithm among the studied proposals.
Resumo:
This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.
Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.
Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.
Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be optimized to support the prescribed plasma equilibrium geometry. In this paper, a genetic algorithm-based method is applied to solve the optimization of the positions and currents of tokamak PF coils. To achieve this goal, we first describe the free-boundary code EQT Based on the EQT code, a genetic algorithm-based method is introduced to the optimization. We apply this new method to the PF system design of the fusion-driven subcritical system and plasma equilibrium geometry optimization of the Experimental Advanced Superconducting Tokamak (EAST). The results indicate that the optimization of the plasma equilibrium geometry can be improved by using this method.
Resumo:
167 p.
Resumo:
Protein structure prediction has remained a major challenge in structural biology for more than half a century. Accelerated and cost efficient sequencing technologies have allowed researchers to sequence new organisms and discover new protein sequences. Novel protein structure prediction technologies will allow researchers to study the structure of proteins and to determine their roles in the underlying biology processes and develop novel therapeutics.
Difficulty of the problem stems from two folds: (a) describing the energy landscape that corresponds to the protein structure, commonly referred to as force field problem; and (b) sampling of the energy landscape, trying to find the lowest energy configuration that is hypothesized to be the native state of the structure in solution. The two problems are interweaved and they have to be solved simultaneously. This thesis is composed of three major contributions. In the first chapter we describe a novel high-resolution protein structure refinement algorithm called GRID. In the second chapter we present REMCGRID, an algorithm for generation of low energy decoy sets. In the third chapter, we present a machine learning approach to ranking decoys by incorporating coarse-grain features of protein structures.
Resumo:
This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.