873 resultados para Project 2005-003-B : Learning System for Life Prediction of Infrastructure
Resumo:
The polypeptide backbones and side chains of proteins are constantly moving due to thermal motion and the kinetic energy of the atoms. The B-factors of protein crystal structures reflect the fluctuation of atoms about their average positions and provide important information about protein dynamics. Computational approaches to predict thermal motion are useful for analyzing the dynamic properties of proteins with unknown structures. In this article, we utilize a novel support vector regression (SVR) approach to predict the B-factor distribution (B-factor profile) of a protein from its sequence. We explore schemes for encoding sequences and various settings for the parameters used in SVR. Based on a large dataset of high-resolution proteins, our method predicts the B-factor distribution with a Pearson correlation coefficient (CC) of 0.53. In addition, our method predicts the B-factor profile with a CC of at least 0.56 for more than half of the proteins. Our method also performs well for classifying residues (rigid vs. flexible). For almost all predicted B-factor thresholds, prediction accuracies (percent of correctly predicted residues) are greater than 70%. These results exceed the best results of other sequence-based prediction methods. (C) 2005 Wiley-Liss, Inc.
Resumo:
Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD
Resumo:
This paper presents investigations into an indoor 2×2 multiple input multiple output (MIMO) system, whose diversity performance is assessed using a high precision test-bed. In this system, transmitter and receiver are equipped with 180° or 90° 3dB hybrids with their two output ports terminated with co-polar monopole antennas. By feeding a signal to one of the two input ports of the hybrid (while the other input port is matched terminated) different communication channels in a rich-scattering environment can be created. The test-bed allows for the signal strength measurements around the receiver/ transmitter sides for a given feeding configuration of hybrids when the receiver is moved over a circular region in an indoor environment. The signal strengths maps obtained for various modes of this 2×2 MIMO system are foundations for investigating transmit/receive diversity schemes. As the signal strength measurement results are obtained with Bluetooth modules operating in the ISM 2.4 GHz, the results are of importance to many other wireless systems that aim at utilizing MIMO diversity schemes to enhance their performance in this frequency band.
Resumo:
In this paper, a novel approach is developed to evaluate the overall performance of a local area network as well as to monitor some possible intrusion detections. The data is obtained via system utility 'ping' and huge data is analyzed via statistical methods. Finally, an overall performance index is defined and simulation experiments in three months proved the effectiveness of the proposed performance index. A software package is developed based on these ideas.
Resumo:
OBJECTIVE: To determine the distribution of the pathological changes in the neocortex in multiple-system atrophy (MSA). METHOD: The vertical distribution of the abnormal neurons (neurons with enlarged or atrophic perikarya), surviving neurons, glial cytoplasmic inclusions (GCI) and neuronal cytoplasmic inclusions (NI) were studied in alpha-synuclein-stained material of frontal and temporal cortex in ten cases of MSA. RESULTS: Abnormal neurons exhibited two common patterns of distribution, viz., density was either maximal in the upper cortex or a bimodal distribution was present with a density peak in the upper and lower cortex. The NI were either located in the lower cortex or were more uniformly distributed down the cortical profile. The distribution of the GCI varied considerably between gyri and cases. The density of the glial cell nuclei was maximal in the lower cortex in the majority of gyri. In a number of gyri, there was a positive correlation between the vertical densities of the abnormal neurons, the total number of surviving neurons, and the glial cell nuclei. The vertical densities of the GCI were not correlated with those of the surviving neurons or glial cells but the GCI and NI were positively correlated in a small number of gyri. CONCLUSION: The data suggest that there is significant degeneration of the frontal and temporal lobes in MSA, the lower laminae being affected more significantly than the upper laminae. Cortical degeneration in MSA is likely to be secondary to pathological changes occurring within subcortical areas.