774 resultados para Prediction intervals
Resumo:
Rationale: Clinical and electrophysiological prognostic markers of brain anoxia have been mostly evaluated in comatose survivors of out hospital cardiac arrest (OHCA) after standard resuscitation, but their predictive value in patients treated with mild induced hypothermia (IH) is unknown. The objective of this study was to identify a predictive score of independent clinical and electrophysiological variables in comatose OHCA survivors treated with IH, aiming at a maximal positive predictive value (PPV) and a high negative predictive value (NPV) for mortality. Methods: We prospectively studied consecutive adult comatose OHCA survivors from April 2006 to May 2009, treated with mild IH to 33-34_C for 24h at the intensive care unit of the Lausanne University Hospital, Switzerland. IH was applied using an external cooling method. As soon as subjects passively rewarmed (body temperature >35_C) they underwent EEG and SSEP recordings (off sedation), and were examined by experienced neurologists at least twice. Patients with status epilepticus were treated with AED for at least 24h. A multivariable logistic regression was performed to identify independent predictors of mortality at hospital discharge. These were used to formulate a predictive score. Results: 100 patients were studied; 61 died. Age, gender and OHCA etiology (cardiac vs. non-cardiac) did not differ among survivors and nonsurvivors. Cardiac arrest type (non-ventricular fibrillation vs. ventricular fibrillation), time to return of spontaneous circulation (ROSC) >25min, failure to recover all brainstem reflexes, extensor or no motor response to pain, myoclonus, presence of epileptiform discharges on EEG, EEG background unreactive to pain, and bilaterally absent N20 on SSEP, were all significantly associated with mortality. Absent N20 was the only variable showing no false positive results. Multivariable logistic regression identified four independent predictors (Table). These were used to construct the score, and its predictive values were calculated after a cut-off of 0-1 vs. 2-4 predictors. We found a PPV of 1.00 (95% CI: 0.93-1.00), a NPV of 0.81 (95% CI: 0.67-0.91) and an accuracy of 0.93 for mortality. Among 9 patients who were predicted to survive by the score but eventually died, only 1 had absent N20. Conclusions: Pending validation in a larger cohort, this simple score represents a promising tool to identify patients who will survive, and most subjects who will not, after OHCA and IH. Furthermore, while SSEP are 100% predictive of poor outcome but not available in most hospitals, this study identifies EEG background reactivity as an important predictor after OHCA. The score appears robust even without SSEP, suggesting that SSEP and other investigations (e.g., mismatch negativity, serum NSE) might be principally needed to enhance prognostication in the small subgroup of patients failing to improve despite a favorable score.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.
Resumo:
SUMMARY: A top scoring pair (TSP) classifier consists of a pair of variables whose relative ordering can be used for accurately predicting the class label of a sample. This classification rule has the advantage of being easily interpretable and more robust against technical variations in data, as those due to different microarray platforms. Here we describe a parallel implementation of this classifier which significantly reduces the training time, and a number of extensions, including a multi-class approach, which has the potential of improving the classification performance. AVAILABILITY AND IMPLEMENTATION: Full C++ source code and R package Rgtsp are freely available from http://lausanne.isb-sib.ch/~vpopovic/research/. The implementation relies on existing OpenMP libraries.
Resumo:
Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.
Resumo:
While the incidence of sleep disorders is continuously increasing in western societies, there is a clear demand for technologies to asses sleep-related parameters in ambulatory scenarios. The present study introduces a novel concept of accurate sensor to measure RR intervals via the analysis of photo-plethysmographic signals recorded at the wrist. In a cohort of 26 subjects undergoing full night polysomnography, the wrist device provided RR interval estimates in agreement with RR intervals as measured from standard electrocardiographic time series. The study showed an overall agreement between both approaches of 0.05 ± 18 ms. The novel wrist sensor opens the door towards a new generation of comfortable and easy-to-use sleep monitors.
Resumo:
Aquest treball fa una revisió de mesures experimentals i càlculs teòrics sobre la dinàmica de col·lisions i reaccions moleculars. Els experiments se centren en col·lisions, a energies intermèdies, que involucren sistemes del tipus ió-àtom i iómolècula, per les quals es mesuren seccions eficaces totals, estat a estat, així com aquelles que discerneixen les diferents contribucions del moment angular d'espín. Els resultats obtinguts s'interpreten satisfactòriament en termes d'acoblaments no adiabàtics entre els diferents estats electrònics dels sistemes col·lisionants. Els càlculs teòrics utilitzen la metodologia quasiclàssica, així com metodologies mecanoquàntiques recentment desenvolupades, tant aproximades com exactes. S'han obtingut resultats totalment convergits per sistemes tipus, mentre que s'han analitzat, de manera detallada i extensiva, les característiques dinàmiques de sistemes triatòmic, tetraatòmic i pentaatòmic.
Resumo:
Ventilator-associated pneumonia (VAP) affects mortality, morbidity and cost of critical care. Reliable risk estimation might improve end-of-life decisions, resource allocation and outcome. Several scoring systems for survival prediction have been established and optimised over the last decades. Recently, new biomarkers have gained interest in the prognostic field. We assessed whether midregional pro-atrial natriuretic peptide (MR-proANP) and procalcitonin (PCT) improve the predictive value of the Simplified Acute Physiologic Score (SAPS) II and Sequential Related Organ Failure Assessment (SOFA) in VAP. Specified end-points of a prospective multinational trial including 101 patients with VAP were analysed. Death <28 days after VAP onset was the primary end-point. MR-proANP and PCT were elevated at the onset of VAP in nonsurvivors compared with survivors (p = 0.003 and p = 0.017, respectively) and their slope of decline differed significantly (p = 0.018 and p = 0.039, respectively). Patients with the highest MR-proANP quartile at VAP onset were at increased risk for death (log rank p = 0.013). In a logistic regression model, MR-proANP was identified as the best predictor of survival. Adding MR-proANP and PCT to SAPS II and SOFA improved their predictive properties (area under the curve 0.895 and 0.880). We conclude that the combination of two biomarkers, MR-proANP and PCT, improve survival prediction of clinical severity scores in VAP.
Resumo:
MicroRNAs (miRs) are involved in the pathogenesis of several neoplasms; however, there are no data on their expression patterns and possible roles in adrenocortical tumors. Our objective was to study adrenocortical tumors by an integrative bioinformatics analysis involving miR and transcriptomics profiling, pathway analysis, and a novel, tissue-specific miR target prediction approach. Thirty-six tissue samples including normal adrenocortical tissues, benign adenomas, and adrenocortical carcinomas (ACC) were studied by simultaneous miR and mRNA profiling. A novel data-processing software was used to identify all predicted miR-mRNA interactions retrieved from PicTar, TargetScan, and miRBase. Tissue-specific target prediction was achieved by filtering out mRNAs with undetectable expression and searching for mRNA targets with inverse expression alterations as their regulatory miRs. Target sets and significant microarray data were subjected to Ingenuity Pathway Analysis. Six miRs with significantly different expression were found. miR-184 and miR-503 showed significantly higher, whereas miR-511 and miR-214 showed significantly lower expression in ACCs than in other groups. Expression of miR-210 was significantly lower in cortisol-secreting adenomas than in ACCs. By calculating the difference between dCT(miR-511) and dCT(miR-503) (delta cycle threshold), ACCs could be distinguished from benign adenomas with high sensitivity and specificity. Pathway analysis revealed the possible involvement of G2/M checkpoint damage in ACC pathogenesis. To our knowledge, this is the first report describing miR expression patterns and pathway analysis in sporadic adrenocortical tumors. miR biomarkers may be helpful for the diagnosis of adrenocortical malignancy. This tissue-specific target prediction approach may be used in other tumors too.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.
Resumo:
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 representative pavement sites across Iowa were selected. The selected pavement sites represent flexible, rigid, and composite pavement systems throughout Iowa. The required MEPDG inputs and the historical performance data for the selected sites were extracted from a variety of sources. The accuracy of the nationally-calibrated MEPDG prediction models for Iowa conditions was evaluated. The local calibration factors of MEPDG performance prediction models were identified to improve the accuracy of model predictions. The identified local calibration coefficients are presented with other significant findings and recommendations for use in MEPDG/DARWin-ME for Iowa pavement systems.