922 resultados para Potassium tert-butoxide
Resumo:
Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.
Resumo:
Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.
Resumo:
Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/K(shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. Genetic variation in K(shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with K(shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. More than two-fold variation in K(shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with K(shoot) were identified, which, despite a significant correlation in K(shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with K(shoot) in glasshouse-grown plants (chromosome C7 at 62 center dot 2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K(+) transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.
Resumo:
The aim of this work is to build on the success of in vitro studies of an active packaging, produced by coating the surface of post-consumer recycled polyethylene terephthalate (PCRPET) package with an aqueous silicone solution (2%, v/v) containing an antifungal agent (potassium sorbate, KS). Antifungal efficacy was evaluated, in vivo, during the storage of raspberries, blackberries and blueberries by examining their shelf life extension. The packaging effectively delayed the growth of Botrytis by extending its lag-phase, which, in turn, extended the shelf life of the berries by up to 3d. Among the three berries tested, the packaging proved to be more advantageous in the case of raspberries, due to their physiological characteristics and shorter shelf life. Based on sensory panel evaluations, it was shown that the coating, containing KS, did not influence the packaging appearance and transparency, and the fruit did not suffer from any off-flavor development.
Resumo:
Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K+) channels to infect cells. Time of addition assays using K+ channel modulating agents demonstrated that K+ channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K+ channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, twin-pore domain K+ channels (K2P) were identified as the K+ channel family mediating BUNV K+ channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.
Resumo:
In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K(+)) and ammonium (NH(4)(+)). We present the results for the distributions of (137)Cs, (40)K and NH(4)(+) from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of (137)Cs and (40)K were measured by gamma spectrometry and concentrations of free NH(4)(+) ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for (40)K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, (137)Cs was not well correlated with NH(4)(+). Significant temporal changes in the NH(4)(+) concentrations were observed during the development of fruits, while the (137)Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs(+) and free NH(4)(+) ions could have distinct concentration ratios for each particular plant organ. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Potassium content in tea brew was determined by gamma-ray spectroscopy, Using the 1461 keV gamma-ray fro M (40)K, the naturally occurring radioactive isotope of potassium. We measured radiation with a shielded HPGe detector from individual test samples of tea leaves, before and after infusion preparation, and from commercial instant tea powder. The correction factor for the gamma-ray self-absorption in the extended source was determined with the help of Monte-Carlo simulations. This gamma-ray spectroscopy technique enabled the absolute determination of potassium content with a relative uncertainty smaller than 4%, at the one standard deviation confidence level, showing the feasibility of this method. An experiment to evaluate a possible systematic Uncertainty due to K distribution heterogeneity in the sample was performed, with file result that the corresponding relative standard deviation is smaller than 2% at 95% confidence level. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We describe here a procedure to bridge the gap in the field of calixarene physicochemistry between solid-state atomic-resolution structural information and the liquid-state low-resolution thermodynamics and spectroscopic data. We use MD simulations to study the kinetics and energetics involved in the complexation of lower rim calix[4]arene derivatives (L), containing bidentate ester (1) and ketone (2) pendant groups, with acetonitrile molecule (MeCN) and Cd2+ and Pb2+ ions (M2+) in acetonitrile solution. On one hand, we found that the prior inclusion of MeCN into the calix to form a L(MeCN) adduct has only a weak effect in preorganizing the hydrophilic cavity toward metal ion binding. On the other hand, the strong ion-hydrophilic cavity interaction produces a wide open calix which enhances the binding of one MeCN molecule (allosteric effect) to stabilize the whole (M2+)1(MeCN) bifunctional complex. We reach two major conclusions: (i) the MD results for the (M2+)1(MeCN) binding are in close agreement with the ""endo"", fully encapsulated, metal complex found by X-ray diffraction and in vacuo MD calculations, and (ii) the MD structure for the more flexible 2 ligand, however, differs from the also endo solid-state molecule. In fact, it shows strong solvation effects at the calixarene lower bore by competing MeCN molecules that share the metal coordination sphere with the four C=O oxygens of an ""exo"" (M2+)2(MeCN) complex.
Resumo:
Ion channels have been assigned a pivotal importance in various sperm functions and are therefore promising targets for contraceptive development. The lack of data on channel functionality and pharmacology has hampered this goal. This is a consequence of technical problems of applying electrophysiological techniques to spermatozoa due to their small size and form. By using a laminin coating to increase adherence of spermatozoa and nystatin in the patch pipette for pore formation, we have adapted the whole-cell recording technique to study currents in mature uncapacitated bovine spermatozoa. Employing these conditions, in the head region, patched spermatozoa could be transferred into the whole-cell configuration. For the first time we document an outward rectifying current in mature bovine spermatozoa was blocked by tetraethyl ammonium (TEA) chloride. The observation of a shift in the reversal potential as a response to changes in the extracellular concentration of K+ ions allowed us to identify this current as K+ selective. This result shows that K+ channels in the head region of mature uncapacitated bovine spermatozoa can be suitably investigated using the whole-cell recording patch-clamp technique.
Resumo:
The stereoselective nucleophilic addition of potassium alkyltrifluoroborates to cyclic N-acyliminium ions derived from N-benzyl-3,4,5-triacetoxy-pyrrolidin-2-one, which affords 5-substituted-pyrrolidin-2-ones, is described. The products are obtained in moderate to good yields and are produced predominantly as the anti diastereomer.
Resumo:
Herein, we describe a convenient method for the synthesis of symmetrical 1,3-dienes employing an oxidative palladium-catalyzed homocoupling of potassium alkenyltrifluoroborates providing products in good yields relative to existing methodologies. This is the first report of a cross-dimerization of potassium alkenyltrifluoroborates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An ultrasound-assisted synthesis of functionalized vinylic chlorides is described by palladium-catalyzed cross-coupling reaction of potassium aryltrifluoroborate salts and (Z)-2-chloro vinylic tellurides. This procedure offers easy access to vinylic chlorides architecture that contains sterically demanding groups in good yields. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.