983 resultados para Ph-sensitive Liposomes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crude extracts of 3-day-old etiolated seedlings of Lathyrus sativus contained two S-adenosyl-L-methionine decarboxylase activities. The artifactual putrescine-dependent activity was due to the H2O2 generated by diamine oxidase (EC 1.4.3.6) of this plant system and was inhibited by catalase. This observation was confirmed by using an electrophoretically and immunologically homogeneous preparation of L. sativus diamine oxidase. In the presence of putrescine, diamine oxidase, in addition to S-adenosylmethionine, decarboxylated L-lysine, L-arginine, L-ornithine, L-methionine and L-glutamic acid to varying degrees. The decarboxylation was not metal-ion dependent. The biosynthetic S-adenosylmethionine decarboxylase (EC 4.1.1.21) was detected after removing diamine oxidase specifically from the crude extracts by employing an immunoaffinity column. This Mg2+ -dependent decarboxylase was not stimulated by putrescine or inhibited by catalase. The enzyme activity was inhibited by semicarbazide, 4-bromo-3-hydroxybenzoylamine dihydrogen phosphate and methylglyoxal-bis (guanylhydrazone). It was largely localized in the shoots of the etiolated seedlings and was purified 40-fold by employing a p-hydroxymercuribenzoate/AH-Sepharose affinity column, which also separated the decarboxylase activity from spermidine synthase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physicochemical characterization of freshwater samples from Finland, Sweden, the Netherlands, and Spain revealed that water hardness and pH decreased and the quantity and quality of humic substances changed considerably in this geographical series from south to north. Since the ambient water chemistry may affect the availability of chemicals, the total aqueous concentration of a chemical may be insufficient to predict the bioconcentration, subsequent biological response, and thus risk. In addition, organisms could be affected directly by water quality characteristics. In this context the main objective of this thesis was to investigate the bioavailability of selected ecotoxicologically relevant chemicals (cadmium, benzo(a)pyrene, and pyrene) in various European surface waters and to show the importance of certain water chemistry characteristics in interpreting the bioavailability and toxicity results. The bioavailability of cadmium to Daphnia magna was examined in very soft humic lake water. Humic substances as natural ligands decreased the free and bioavailable proportion of cadmium in soft lake water. As a consequence the uptake rate and the acute toxicity decreased compared with the humic-free reference. When the hardness of humic lake water was artificially elevated, the acute toxicity of cadmium decreased, although the proportion of free cadmium increased. The decreased bioavailability of cadmium in hard water was a result of effective competition for uptake by the hardness cations, especially calcium ions. The protective role of humic substances and water hardness against cadmium toxicity was also observed in Lumbriculus variegatus, although D. magna was more sensitive to cadmium. The bioavailability of two polycyclic aromatic hydrocarbons (PAHs), pyrene and benzo(a)pyrene, was studied in European surface waters of varying water chemistry. Humic substances acted as complexing ligands with both PAHs, but the bioavailability of the more lipophilic benzo(a)pyrene to D. magna was affected more by humic substances than that of pyrene. In addition, not only the quantity of humic substances, but also their quality affected the bioavailability of benzo(a)pyrene. Nevertheless, the humic substances played a protective role in the photo-enhanced toxicity of pyrene under UV-B radiation. Water hardness had no effect on pyrene toxicity. Results indicate that the typical physicochemical characteristics of boreal freshwaters should be considered carefully in local and regional risk assessment of chemicals concerning the Fennoscandian region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work provides a regional-scale assessment of the changes in acidifying deposition in Finland over the past 30 years and the current pattern in the recovery of acid-sensitive lakes from acidification in relation to changes in sulphate deposition. This information is needed for documenting the ecosystem benefits of costly emission reduction policies and further actions in air pollution policy. The development of sulphate deposition in Finland reflects that of European SO2 emissions. Before the 1990s, reductions in sulphur emissions in Europe had been relatively small and sulphate deposition showed no consistent trends. Due to emission reduction measures that were then taken, sulphate deposition started to clearly decline from the late 1980s. The bulk deposition of sulphate has declined 40-60% in most parts of the country during 1990-2003. The decline in sulphate deposition exceeded the decline of base cation deposition, which resulted in a decrease in acidity and acidifying potential of deposition over the 1990s. Nitrogen deposition also decreased since the late 1980s, but less than that of sulphate, and levelling off during the 1990s. Sulphate concentrations in all types of small lakes throughout Finland have declined from the early 1990s. The relative decrease in lake sulphate concentrations (average 40-50%) during 1990-2003 was rather similar to the decline in sulphate deposition, indicating a direct response to the reduction in deposition. There are presently no indications of elevated nitrate concentrations in forested headwater lakes. Base cation concentrations are still declining in many lakes, especially in south Finland, but to a lesser extent than sulphate allowing buffering capacity (alkalinity) to increase, being significant in 60% of the study lakes. Chemical recovery is resulting in biological recovery with populations of acid-sensitive fish species increasing. The recovery has been strongest in lakes in which sulphate has been the major acidifying agent, and recovery has been the strongest and most consistent in lakes in south Finland. The recovery of lakes in central Finland and north Finland is not as widespread and strong as observed in south. Many catchments, particularly in central Finland, have a high proportion of peatlands and therefore high TOC concentrations in lakes, and runoff-induced surges of organic acids have been an important confounding factor suppressing the recovery of pH and alkalinity in these lakes. Chemical recovery is progressing even in the most acidified lakes, but the buffering capacity of many lakes is still low and still sensitive to acidic input. Further reduction in sulphur emissions are needed for the alkalinity to increase in the acidified lakes. Increasing total organic carbon (TOC) concentrations are indicated in small forest lakes in Finland. The trends appear to be related to decreasing sulphate deposition and improved acid-base status of the soil, and the rise in TOC is integral to recovery from acidification. A new challenge is climate change with potential trends in temperature, precipitation and runoff, which are expected to affect future chemical and biological recovery from acidification. The potential impact on the mobilization and leaching of organic acids may become particularly important in Finnish conditions. Long-term environmental monitoring has evidently shown the success of international emission abatement strategies. The importance and value of integrated monitoring approach including physical, chemical and biological variables is clearly indicated, and continuous environmental monitoring is needed as a scientific basis for further actions in air pollution policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The denaturation of β-lactoglobulin-A by heat and guanidine hydrochloride at pH 2 has been investigated. The effect of ethylene glycol on the thermal denaturation at this pH has also been studied. The conditions of the experiments have been chosen so as to eliminate complications arising out of disulfide interchange, changes in the degree of association of the protein during denaturation, and intermolecular aggregation. The physical parameters characterizing the denatured states of the protein which are produced by heat and guanidine hydrochloride have been determined. The thermodynamic parameters for these transitions have been estimated using a two-state hypothesis in each case. Both the physical and thermodynamic parameters indicate that the heat-denatured state of β-lactoglobulin-A retains about 15-20% of residual structure which is destroyed on adding guanidine hydrochloride.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diglycyl triperoxodivanadate [V2O2(O2)3(Gly H)2(H2O)2], a synthetic compound with μ-peroxo-bridge derived from H2O2and vanadate, oxidized bromide to a bromination-competent intermediate in phosphate buffer and physiological pH. This is in contrast to the requirement of acid medium with H2O2as the oxidant. Addition of its solid to bromide solution instantly produced a 262-nm-absorbing compound that converted phenol red (a trap) to its 592-nm-absorbing bromo-derivative. The high bromination activity was lost on dissolving this compound in water and the solution showed the presence of peroxovanadates (mono and di) and vanadates (V1and oligomeric V10) in51V-NMR spectrum. Of these, diperoxovanadate and vanadate together supported slow bromination activity by a second set of reactions including bromide-assisted reductive formation of vanadyl. Bromination activity dependent on vanadyl was sensitive to oxidation by excess H2O2and to complexation by EDTA, whereas that of triperoxodivanadate was relatively insensitive. Vanadyl and diperoxovanadate are capable of forming a μ-peroxo-bridged complex that is essentially similar to the synthetic vanadate dimer used in the present experiments. It appears that a μ-peroxo-intermediate is the proximal oxidant of bromide in vanadium-catalyzed bromoperoxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rates of NADH oxidation in presence of xanthine oxidase increase to a small and variable extent on addition of high concentrations of lactate dehydrogenase and other dehydrogenases. This heat stable activity is similar to polyvanadate-stimulation with respect to pH profile and SOD sensitivity. Isocitric dehydrogenase (NADP-specific) showed heat labile, SOD-sensitive polyvanadate-stimulated NADH oxidation activity. Polyvanadate-stimulated SOD-sensitive NADH oxidation was also found to occur with riboflavin, FMN and FAD in presence of a non-specific protein, BSA, suggesting that some flavoproteins may possess this activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health information technology (IT) can have a profound effect on the temporal flow and organisation of work. Yet research into the context, meaning and significance of temporal factors remains limited, most likely because of its complexity. This study outlines the role of communications in the context of the temporal and organizational landscape of seven Australian residential aged care facilities displaying a range of information exchange practices and health IT capacity. The study used qualitative and observational methods to identify temporal factors associated with internal and external modes of communication across the facilities and to explore the use of artifacts. The study concludes with a depiction of the temporal landscape of residential aged care particularly in regards to the way that work is allocated, prioritized, sequenced and coordinated. We argue that the temporal landscape involves key context-sensitive factors that are critical to understanding the way that humans accommodate to, and deal with health technologies, and which are therefore important for the delivery of safe and effective care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To document electroencephalogram (EEG) changes and their correlation with clinical parameters in a newly diagnosed pediatric cohort of type 1 diabetes mellitus (T1DM) patients with and without diabetic ketoacidosis (DKA) and to define their medium term utility and significance. Research design and methods: Prospective longitudinal study of children presenting with T1DM. EEGs were performed within 24 h of diagnosis, day 5, and at 6 months post-diagnosis and reviewed by a neurologist blinded to clinical status. Severity of encephalopathy was graded from 1 to 5 using the Aoki and Lombroso encephalopathy scale. Cognitive abilities were assessed using standardized tests of attention, memory, and intelligence. Results: Eighty eight children were recruited; 34 presented with DKA. Abnormal background slowing was more often observed in the first 24 h in children with DKA (p = 0.01). Encephalopathy scores on day 1 correlated with initial pH, CO2, HCO3, base excess, respiratory rate, heart rate, diastolic blood pressure, and IV fluid intake (all parameters p < 0.05). EEG scores at day 1 did not correlate with contemporaneous mental state or cognition in the medium term. Conclusions: DKA was associated with significant clinical and neurophysiologic signs of brain dysfunction at presentation. While EEG is sensitive to the detection of encephalopathy in newly diagnosed T1DM, it has limited use in identifying children at risk of later cognitive deficits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease characterized by accumulation of lipids and fibrous connective tissue in the arterial wall. Recently, it has been suggested that decrease in the pH of extracellular fluid of the arterial intima may enhance LDL accumulation by increasing binding of the LDL to matrix proteoglycans and also by making the plaque more favorable for acidic enzymes to be active. Many lysosomal acidic enzymes have been found in atherosclerotic plaques. In this thesis, we were able to induce secretion of lysosomal acidic cathepsin F from human monocyte-derived macrophages by stimulation with angiotensin II. We also showed that LDL pre-proteolyzed with cathepsin S was more prone to subsequent hydrolytic modifications by lipases. Especially acidic secretory sphingomyelinase was able to hydrolyze pre-proteolyzed LDL even at neutral pH. We also showed that the proteolyzed and lipolyzed LDL particles were able to bind more efficiently to human aortic proteoglycans. In addition, the role of extracellular acidic pH on the ability of macrophages to internalize LDL was studied. At acidic pH, the production of cell surface proteoglycans in macrophages was increased as well as the binding of native and modified LDL to cell surface proteoglycans. Furthermore, macrophages cultured at acidic pH showed increased internalization of modified and native LDL leading to foam cell formation. This thesis revealed various mechanisms by which acidic pH can increase LDL retention and accumulation in the arterial intima and has the potential to increase the progression of atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate is warming and it is especially seen in arctic areas, where the warming trend is expected to be greatest. Arctic freshwater ecosystems, which are a very characteristic feature of the arctic landscape, are especially sensitive to climate change. They could be used as early warning systems, but more information about the ecosystem functioning and responses are needed for proper interpretation of the observations. Phytoplankton species and assemblages could be especially suitable for climate-related studies, since they have short generation times and react rapidly to changes in the environment. In addition, phytoplankton provides a good tool for lake classifications, since different species have different requirements and tolerance ranges for various environmental factors. The use of biological indicators is especially useful in arctic areas, were many of the chemical factors commonly fall under the detection limit and therefore do not provide much information about the environment. This work brings new information about species distribution and dynamics of arctic freshwater phytoplankton in relation to environmental factors. The phytoplankton of lakes in Finnish Lapland and other European high-altitude or high-latitude areas were compared. Most lakes were oligotrophic and dominated by flagellated species belonging to chrysophytes, cryptophytes and dinoflagellates. In Finnish Lapland cryptophytes were of less importance, whereas desmids had high species richness in many of the lakes. In Pan-European scale, geographical and catchment-related factors were explaining most of the differences in species distributions between different districts, whereas lake water chemistry (especially conductivity, SiO2 and pH) was most important regionally. Seasonal and interannual variation of phytoplankton was studied in subarctic Lake Saanajärvi. Characteristic phytoplankton species in this oligotrophic, dimictic lake belonged mainly to chrysophytes and diatoms. The maximum phytoplankton biomass in Lake Saanajärvi occurs during autumn, while spring biomass is very low. During years with heavy snow cover the lake suffers from pH drop caused by melt waters, but the effects of this acid pulse are restricted to surface layers and last for a relatively short period. In addition to some chemical parameters (mainly Ca and nutrients), length of the mixing cycle and physical factors such as lake water temperature and thermal stability of water column had major impact on phytoplankton dynamics. During a year with long and strong thermal stability, the phytoplankton community developed towards an equilibrium state, with heavy dominance of only a few taxa for a longer period of time. During a year with higher windiness and less thermal stability, the species composition was more diverse and species with different functional strategies were able to occur simultaneously. The results of this work indicate that although arctic lakes in general share many common features concerning their catchment and water chemistry, large differences in biological features can be found even in a relatively small area. Most likely the lakes with very different algal flora do not respond in a similar way to differences in the environmental factors, and more information about specific arctic lake types is needed. The results also show considerable year to year differences in phytoplankton species distribution and dynamics, and these changes are most likely linked to climatic factors.