928 resultados para Peroxidase Inhibitors
The spindle assembly checkpoint as a drug target - Novel small-molecule inhibitors of Aurora kinases
Resumo:
Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.
Resumo:
The human body eliminates foreign compounds primarily by metabolizing them to hydrophilic forms to facilitate effective excretion through the kidneys. Cytochrome P450 (CYP) enzymes in the liver and intestine contribute to the metabolism of many drugs. Pharmacokinetic drugdrug interactions occur if the activity of CYPs are inhibited or induced by another drug. Prescribing multiple drugs to the improve effectiveness of therapy or to treat coexisting diseases is a common practice in clinical medicine. Polypharmacy predisposes patients to adverse effects because of the profound unpredictability in CYP enzymatic-mediated drug metabolism. S-ketamine is a phencyclidine derivative which functions as an antagonist of the N-methyl-Daspartate (NMDA) receptor in the central nervous system. It is a unique anaesthetic producing “dissociative anaesthesia” in high doses and analgesia in low doses. Studies with human liver microsomes suggest that ketamine is metabolized primarily via CYP3A4 and CYP2B6 enzymes. In this thesis, in healthy volunteers, randomized and controlled cross-over studies were conducted to investigate the effects of different CYP inducers and inhibitors on the pharmacokinetics and pharmacodynamics of oral and intravenous S-ketamine. The plasma concentrations of ketamine and its metabolite, norketamine, were determined at different timepoints over a 24 hour period. Other pharmacodynamic variables were examined for 12 hours. Results of these studies showed that the inhibition of the CYP3A4 pathway by clarithromycin or grapefruit juice increased the exposure to oral S-ketamine by 2.6- and 3.0-fold. Unexpectedly, CYP3A4 inhibition by itraconazole caused no significant alterations in the plasma concentrations of oral S-ketamine. CYP3A4 induction by St. John´s wort or rifampicin decreased profoundly the concentrations of oral S-ketamine. However, after rifampicin, there were no significant differences in the plasma concentrations of S-ketamine when it was administered intravenously. This demonstrated that rifampicin inhibited the metabolism of Sketamine at the intestinal level. When CYP2B6 was inhibited by ticlopidine, there was a 2.4- fold increase in the exposure of S-ketamine. These studies demonstrated that low dose oral Sketamine is metabolized both via CYP3A4 and CYP2B6 pathways. The concomitant use of drugs that affect CYP3A4 or CYP2B6, during oral S-ketamine treatment, may cause clinically significant drug-drug interactions.
Resumo:
Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.
Resumo:
Myriophyllum aquaticum é uma planta perene, herbácea, que pode se desenvolver totalmente submersa ou com a porção terminal dos ramos acima da superfície da água. É também considerada uma planta daninha que possui elevado potencial de colonização, o qual, dependendo da densidade populacional, pode causar aumento no teor de matéria orgânica e redução de oxigênio na água, comprometendo a qualidade da água e seus usos múltiplos. O objetivo do presente trabalho foi verificar a influência do cobre na atividade da pirogalol peroxidase de plantas de M. aquaticum submetidas à solução nutritiva contendo concentrações de cobre de 1,2; 11,2; 21,2; 31,2; e 41,2 µg L-1. O experimento foi conduzido em um delineamento experimental inteiramente casualizado, com quatro repetições e cinco tratamentos, aos quais as plantas foram submetidas durante 21 dias. Aos 81 dias após a instalação das mudas em solução nutritiva contendo os diferentes níveis de cobre, as folhas foram colhidas a partir do ápice da planta até o final do ramo, que não estavam em contato com a solução. Esse material fresco foi envolvido por plástico transparente e papel-alumínio e, a seguir, congelado em nitrogênio líquido, sendo armazenado em freezer a -20 ºC até o momento da determinação da atividade da enzima pirogalol peroxidase. A atividade da enzima foi progressiva com o aumento das doses de cobre. As plantas cultivadas com 40 µg L-1 de Cu2+ após três semanas, com base em avaliação visual, apresentaram redução no desenvolvimento.
Resumo:
The continuous use of ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is one of the most troublesome weeds found in the soybean production system in Brazil. Recently, a greater beggarticks biotype that is resistant (R) to ALS inhibitors due to Trp574Leu mutation in the ALS gene was identified. Also, the adaptive traits between susceptible (S) and R to ALS inhibitors biotypes of greater beggarticks were compared. Specifically, we aimed to: (1) evaluate and compare the relative growth rates (RGR) between the biotypes; (2) analyze the seed germination characteristics of R and S biotypes under different temperature conditions; and (3) evaluate their competitive ability in a replacement series study. The experiments were conducted at the University of Arkansas, USA, in 2007 and at Universidade Federal do Rio Grande do Sul (Federal University of Rio Grande do Sul), Brazil, in 2008. Plant proportions for replacement series studies were respectively 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 150 plants m-2. There was no difference in RGR between R and S biotypes. The R-biotype germination rate was lower than that of the S biotype. However, at low temperature conditions (15 ºC), the reverse was observed. In general, there is no difference in the competitive ability between R and S greater beggarticks biotypes.
Resumo:
The action of herbicides that affect the integrity of cell membranes and cause leakage, like PPO-inhibitors, can be detected by measuring the electric conductivity (EC) of a solution in which the plant tissue target is incubated in the presence of herbicide. The objectives of this work were to confirm PPO resistance in a new Euphorbia heterophylla (EPHHL) biotype, and to compare the electrolyte leakage from R and S to PPO-inhibitors biotypes, using two different methods of incubation in a solution containing herbicides. One experiment was carried in greenhouse and three in laboratory, with a completely randomized design. In the greenhouse experiment, four biotypes of EPHHL were sprayed with seven rates of fomesafen to confirm resistance in suspected biotypes. Leaf disks from R and S EPHHL biotypes in the second and the third experiments and entire leaves in the fourth experiment were incubated in a solution containing PPO-inhibitors to subsequently determine EC of solution. The study confirmed the resistance to PPO-inhibitors in two EPHHL biotypes. There were no significant differences between S and R biotypes in the experiments with the incubation of leaf disks, but incubation of entire leaves of EPHHL S biotype showed higher EC when in a solution with fomesafen, in comparison to the R biotype. The results of this work are an indirect evidence that resistance to PPO-inhibitors is related to lower absorption of herbicide by the shoots and also to some kind of mechanism to cope with oxidative stress.
Resumo:
Eleusine indica (goosegrass) is a diploid grass weed which has developed resistance to ACCase inhibitors during the last ten years due to the intensive and frequent use of sethoxydim to control grass weeds in soybean crops in Brazil. Plant dose-response assays confirmed the resistant behaviour of one biotype obtaining high resistance factor values: 143 (fenoxaprop), 126 (haloxyfop), 84 (sethoxydim) to 58 (fluazifop). ACCase in vitro assays indicated a target site resistance as the main cause of reduced susceptibility to ACCase inhibitors. PCR-generated fragments of the ACCase CT domain of the resistant and sensitive reference biotype were sequenced and compared. A point mutation was detected within the triplet of aspartate at the amino acid position 2078 (referred to EMBL accession no. AJ310767) and resulted in the triplet of glycine. These results constitute the first report on a target site mutation for a Brazilian herbicide resistant grass weed.
Resumo:
Well-maintained lawns are comfortable and safe places for leisure activities and sports practice, and they also bring environmental benefits; for example, they reduce soil exposure to erosion and releases atmospheric CO2, thus reducing the greenhouse effect. However, regardless of the purpose of use or the choice of the plant species to form the lawn, the highest costs involve cutting that is needed to keep the turfgrass at its appropriate height. Successive lawn cutting operations are necessary basically because of the vegetative and reproductive growth of turfgrass which, in Brazil, occurs mainly from October to March. Expenditures with successive mechanical cuttings have fostered the search of alternative procedures to keep lawn plants at appropriate height, such as the use of plant growth inhibitors, an increasingly interesting procedure. Since the use of this technology in Brazil is still at its early stage, the aim of this literature review is to examine aspects associated with lawn management by using growth inhibitors. Another alternative is to increase the knowledge of the classification and rational application of the different compounds currently available in the market.
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.
Resumo:
Adrenocortical autoantibodies (ACA), present in 60-80% of patients with idiopathic Addison's disease, are conventionally detected by indirect immunofluorescence (IIF) on frozen sections of adrenal glands. The large-scale use of IIF is limited in part by the need for a fluorescence microscope and the fact that histological sections cannot be stored for long periods of time. To circumvent these restrictions we developed a novel peroxidase-labelled protein A (PLPA) technique for the detection of ACA in patients with Addison's disease and compared the results with those obtained with the classical IIF assay. We studied serum samples from 90 healthy control subjects and 22 patients with Addison's disease, who had been clinically classified into two groups: idiopathic (N = 13) and granulomatous (N = 9). ACA-PLPA were detected in 10/22 (45%) patients: 9/13 (69%) with the idiopathic form and 1/9 (11%) with the granulomatous form, whereas ACA-IIF were detected in 11/22 patients (50%): 10/13 (77%) with the idiopathic form and 1/9 (11%) with the granulomatous form. Twelve of the 13 idiopathic addisonians (92%) were positive for either ACA-PLPA or ACA-IIF, but only 7 were positive by both methods. In contrast, none of 90 healthy subjects was found to be positive for ACA. Thus, our study shows that the PLPA-based technique is useful, has technical advantages over the IIF method (by not requiring the use of a fluorescence microscope and by permitting section storage for long periods of time). However, since it is only 60% concordant with the ACA-IIF method, it should be considered complementary instead of an alternative method to IIF for the detection of ACA in human sera.
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
Topoisomerase inhibitors are agents with anticancer activity. 7"-O-Methyl-agathisflavone (I) and amentoflavone (II) are biflavonoids and were isolated from the Brazilian plants Ouratea hexasperma and O. semiserrata, respectively. These biflavonoids and the acetyl derivative of II (IIa) are inhibitors of human DNA topoisomerases I at 200 µM, as demonstrated by the relaxation assay of supercoiled DNA, and only agathisflavone (I) at 200 µM also inhibited DNA topoisomerases II-alpha, as observed by decatenation and relaxation assays. The biflavonoids showed concentration-dependent growth inhibitory activities on Ehrlich carcinoma cells in 45-h culture, assayed by a tetrazolium method, with IC50 = 24 ± 1.4 µM for I, 26 ± 1.1 µM for II and 10 ± 0.7 µM for IIa. These biflavonoids were assayed against human K562 leukemia cells in 45-h culture, but only I showed 42% growth inhibitory activity at 90 µM. Our results suggest that biflavonoids are targets for DNA topoisomerases and their cytotoxicity is dependent on tumor cell type.
Resumo:
Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml) on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates) reduced (1.2 to 3.0 times) the catalytic efficiency of kallikrein (in a nanomolar range) on the hydrolysis of plasminogen (0.3 to 1.8 µM) and increased (1.9 to 7.7 times) the enzyme efficiency in factor XII (0.1 to 10 µM) activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times) kallikrein inhibition by antithrombin (1.4 µM), while chondroitin 4- and 6-sulfates reduced it (1.3 times). Heparin and heparan sulfate increased (1.4 times) the enzyme inhibition by the C1-inhibitor (150 nM).
Resumo:
Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%), staurosporine (1 µM - 58%), R03 (1 µM - 75%), and tyrphostins B44 (100 µM - 66%) and B46 (100 µM - 68%). All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.
Resumo:
Saccharomyces cerevisiae mutants deficient in superoxide dismutase genes (sod1delta, sod2delta and the double mutant) were subjected to H2O2 stress in the stationary phase. The highest sensitivity was observed in the sod2delta mutant, while the sod1deltasod2delta double mutant was not sensitive. Sod mutants had lower catalase activity (44%) than wild-type cells, independent of H2O2 stress. Untreated cells of sod1deltasod2delta double mutants showed increased glutathione peroxidase activity (126%), while sod1delta had lower activity (77%) than the wild type. Glutathione levels in sod1delta were increased (200-260%) after exposure to various H2O2 concentrations. In addition, the highest malondialdehyde levels could be observed without H2O2 treatment in sod1delta (167%) and sod2delta (225%) mutants. In contrast, the level of malondialdehyde in the sod1deltasod2delta double mutant was indistinguishable from that of the wild type. These results suggest that resistance to H2O2 by sod1deltasod2delta cells depends on the induction of glutathione peroxidase and is independent of catalase, and that glutathione is a primary antioxidant in the defense against H2O2 in stationary phase sod1delta mutants.