933 resultados para PIE roots
Resumo:
Sitosterolaemia is a rare autosomal recessive disease characterized by increased intestinal absorption of plant sterols, decreased hepatic excretion into bile and elevated concentrations in plasma phytosterols. Homozygous or compound heterozygous loss of function mutations in either of the ATP-binding cassette (ABC) proteins ABCG5 and ABCG8 explain the increased absorption of plant sterols. Here we report a Swiss index patient with sitosterolaemia, who presented with the classical symptoms of xanthomas, but also had mitral and aortic valvular heart disease. Her management over the last 20 years included a novel therapeutic approach of high-dose cholesterol feeding that was semi-effective. Mutational and extended haplotype analyses showed that our patient shared this haplotype with that of the Amish-Mennonite sitosterolaemia patients, indicating they are related ancestrally.
Resumo:
Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.
Resumo:
Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.
Resumo:
Volunteering rates in Switzerland vary substantially across language regions. In this article, we investigate the cultural roots of this variation by presenting and empirically testing two different conceptualizations of how linguistic culture is related to individual volunteering. Whereas the first perspective perceives the individual as belonging to a particular language community and its norms and values as crucial for individual volunteering, the other sees the linguistic culture mainly as an important context in which an individual lives and which therefore influences individual volunteering. Empirically, we base our analysis on new survey data from 60 Swiss communes and apply a Bayesian multi-level analysis in order to disentangle the linguistic group from contextual effects. Our analysis supports the view that cultural patterns of civic self-organization can indeed explain regional volunteering behaviour in Switzerland. Whereas the propensity to volunteer is generally highest in German-speaking Switzerland, our findings reveal that it is the group of French speakers that exhibits the highest propensity to volunteer when controlling for language region.
Resumo:
Rice has the predilection to take up arsenic in the form of methylated arsenic (o-As) and inorganic arsenic species (i-As). Plants defend themselves using i-As efflux systems and the production of phytochelatins (PCs) to complex i-As. Our study focused on the identification and quantification of phytochelatins by HPLC-ICP-MS/ESI-MS, relating them to the several variables linked to As exposure. GSH, 11 PCs, and As–PC complexes from the roots of six rice cultivars (Italica Carolina, Dom Sofid, 9524, Kitrana 508, YRL-1, and Lemont) exposed to low and high levels of i-As were compared with total, i-As, and o-As in roots, shoots, and grains. Only Dom Sofid, Kitrana 508, and 9524 were found to produce higher levels of PCs even when exposed to low levels of As. PCs were only correlated to i-As in the roots (r=0.884, P <0.001). However, significant negative correlations to As transfer factors (TF) roots–grains (r= –0.739, P <0.05) and shoots–grains (r= –0.541, P <0.05), suggested that these peptides help in trapping i-As but not o-As in the roots, reducing grains’ i-As. Italica Carolina reduced i-As in grains after high exposure, where some specific PCs had a special role in this reduction. In Lemont, exposure to elevated levels of i-As did not result in higher i-As levels in the grains and there were no significant increases in PCs or thiols. Finally, the high production of PCs in Kitrana 508 and Dom Sofid in response to high As treatment did not relate to a reduction of i-As in grains, suggesting that other mechanisms such as As–PC release and transport seems to be important in determining grain As in these cultivars.
Resumo:
We prove that any isotropic positive definite function on the sphere can be written as the spherical self-convolution of an isotropic real-valued function. It is known that isotropic positive definite functions on d-dimensional Euclidean space admit a continuous derivative of order [(d − 1)/2]. We show that the same holds true for isotropic positive definite functions on spheres and prove that this result is optimal for all odd dimensions.
Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays
Resumo:
Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.
Resumo:
INTRODUCTION The proximity of the roots of the posterior maxillary teeth to the maxillary sinus is a constant challenge to the dental practitioner. Because the majority of studies have assessed the relationship regarding molars, the present study focused on premolars. METHODS Cone-beam computed tomographic images of 192 patients were reconstructed in sagittal, coronal, and axial planes to quantify the distances between the root apices of the maxillary premolars and the adjacent maxillary sinus. Measurements were taken for each root, and data were correlated with age, sex, side, and presence of both or absence of 1 of the 2 premolars. RESULTS A total of 296 teeth (177 first and 119 second premolars) were evaluated. The mean distances from buccal roots of the first premolars to the border of the maxillary sinus in the sagittal, coronal, and axial planes ranged from 5.15 ± 2.99 to 8.28 ± 6.27 mm. From palatal roots, the mean distances ranged from 4.20 ± 3.69 to 7.17 ± 6.14 mm. The mean distances of second premolars were markedly shorter in buccal roots between 2.32 ± 2.19 and 3.28 ± 3.17 mm and in palatal roots between 2.68 ± 3.58 and 3.80 ± 3.71 mm, respectively. The frequency of a premolar root protrusion into the maxillary sinus was very low in first premolars (0%-7.2%) but higher in second premolars (2.5%-13.6%). Sex, age, side, and presence/absence of premolars failed to significantly influence the mean distances between premolar roots and the maxillary sinus. CONCLUSIONS Based on the calculated mean distances of the present study, only few premolars (and if so second premolars) would present a risk of violating the border of the maxillary sinus during conventional or surgical endodontic treatment or in case of tooth extraction.
Resumo:
del Isacco Rignano