934 resultados para Occupational light vehicle use
Resumo:
New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.
Resumo:
The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
The use of appropriate acceptance criteria in the risk assessment process for occupational accidents is an important issue but often overlooked in the literature, particularly when new risk assessment methods are proposed and discussed. In most cases, there is no information on how or by whom they were defined, or even how companies can adapt them to their own circumstances. Bearing this in mind, this study analysed the problem of the definition of risk acceptance criteria for occupational settings, defining the quantitative acceptance criteria for the specific case study of the Portuguese furniture industrial sector. The key steps to be considered in formulating acceptance criteria were analysed in the literature review. By applying the identified steps, the acceptance criteria for the furniture industrial sector were then defined. The Cumulative Distribution Function (CDF) for the injury statistics of the industrial sector was identified as the maximum tolerable risk level. The acceptable threshold was defined by adjusting the CDF to the Occupational, Safety & Health (OSH) practitioners’ risk acceptance judgement. Adjustments of acceptance criteria to the companies’ safety cultures were exemplified by adjusting the Burr distribution parameters. An example of a risk matrix was also used to demonstrate the integration of the defined acceptance criteria into a risk metric. This work has provided substantial contributions to the issue of acceptance criteria for occupational accidents, which may be useful in overcoming the practical difficulties faced by authorities, companies and experts.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Doctoral Dissertation for PhD degree in Industrial and Systems Engineering
Resumo:
PhD in Chemical and Biological Engineering
Resumo:
This thesis investigates the challenges of establishing the electric vehicle (EV) in Ireland and how the Irish government and industry are trying to meet them. It further seeks to provide information on Irish consumers’ attitudes towards the electric vehicle and their willingness to purchase it. The review of the literature showed that the Irish government is investing significant funds in trying to establish the market for the electric vehicle and position itself as a world leader in adopting the electric vehicle. The EV will also have an important role to play in how Ireland meets its targets for CO2 reductions towards 2020. Climate change and use of fossil fuels are driving the need for increased use of renewable energy and increased energy independence while reducing the greenhouse gas emissions that are the leading cause of climate change. The transport sector is almost completely dependent on the use of fossil fuel and resultantly is one of the largest sources of these GHG emissions. These issues are leading to the design and production of more energy efficient and environmentally friendly vehicles. The ultimate goal is to achieve a zero emissions vehicle. The electric vehicle is presently the only vehicle being mass produced that has the potential to be zero emissions. There are however issues that customers may not be willing to overlook such as the lower range of the vehicle and the length of time it takes to recharge. Vehicle cost is also an important issue that customers may not overlook. Knowing what the consumer’s attitudes are towards the EV and their willingness to purchase them is important as these new vehicles begin to appear in the showrooms. The consumers will be vital to how successful this market becomes. Using an online questionnaire methodology, in a sample of 118 consumers, the major conclusion to be drawn from the research is that the vehicle price, the convenience to recharge and vehicle range were the three most essential issues for the consumers if they were purchasing an EV. The success of the electric vehicle market may depend on what measures are taken to overcome them.
Resumo:
Abstract Casual blood pressure measurements have been extensively questioned over the last five decades. A significant percentage of patients have different blood pressure readings when examined in the office or outside it. For this reason, a change in the paradigm of the best manner to assess blood pressure has been observed. The method that has been most widely used is the Ambulatory Blood Pressure Monitoring - ABPM. The method allows recording blood pressure measures in 24 hours and evaluating various parameters such as mean BP, pressure loads, areas under the curve, variations between daytime and nighttime, pulse pressure variability etc. Blood pressure measurements obtained by ABPM are better correlated, for example, with the risks of hypertension. The main indications for ABPM are: suspected white coat hypertension and masked hypertension, evaluation of the efficacy of the antihypertensive therapy in 24 hours, and evaluation of symptoms. There is increasing evidence that the use of ABPM has contributed to the assessment of blood pressure behaviors, establishment of diagnoses, prognosis and the efficacy of antihypertensive therapy. There is no doubt that the study of 24-hour blood pressure behavior and its variations by ABPM has brought more light and less darkness to the field, which justifies the title of this review.
Resumo:
This paper analyses the impact of a series of managerial and organisational factors on occupational injuries. These consist of occupational safety measures, as regards both the intensity and the orientation of risk prevention in companies, and the adoption of certain work organisation practices, quality management and the use of flexible production technologies. We estimate a negative binomial regression based on a sample of 213 Spanish industrial establishments, defining a constant random parameter to take account of non-observable heterogeneity. Our results show that occupational safety measures, the intensive use of quality management tools and the empowerment of workers all help to reduce the number of injuries. We have also confirmed the presence of synergies between the organisational factors analysed and the development of an occupational safety strategy featuring participation and the extension of prevention to all levels of the organisation.
Resumo:
Increasing greenhouse light transmission has a positive effect not only in Northern latitudes but in Mediterranean countries as well. A greenhouse, H2, with a tetrafluoroethylene copolymer 60 microns film, (Asahi Glass company, Aflex) characterised by its high light transmission and durability was compared to another greenhouse with a co-extruded film considered as a control, H1. Tomato crop response to the increase in light during winter and summer with high temperature and light was evaluated. Light transmission in H2 remained very high in spite of the observed dust accumulation and the low angle of incidence of the winter solar radiation. Transmissivity was clearly higher for H2 (81 to 83 % throughout the season) than in the control (around 63 %). The rest of the climatic parameters were similar in both greenhouses, either in the winter or in the summer evaluations. In spite of the high solar radiation in H2, the summer temperature could be maintained at the desired levels by using evaporative cooling. Accumulated tomato yield and quality was better in the H2 greenhouse (15 % more for the winter crop and 27% more for the summer crop). Fruit size was bigger in the winter crop. As an overall conclusion, the use of high light transmissive films in Mediterranean areas is very convenient for many vegetable crops. This is valid not only in winter but in summer, provided the greenhouse has good ventilation or evaporative cooling to overcome the increase in sensible heat caused by this increase in light..
Resumo:
A computerized handheld procedure is presented in this paper. It is intended as a database complementary tool, to enhance prospective risk analysis in the field of occupational health. The Pendragon forms software (version 3.2) has been used to implement acquisition procedures on Personal Digital Assistants (PDAs) and to transfer data to a computer in an MS-Access format. The data acquisition strategy proposed relies on the risk assessment method practiced at the Institute of Occupational Health Sciences (IST). It involves the use of a systematic hazard list and semi-quantitative risk assessment scales. A set of 7 modular forms has been developed to cover the basic need of field audits. Despite the minor drawbacks observed, the results obtained so far show that handhelds are adequate to support field risk assessment and follow-up activities. Further improvements must still be made in order to increase the tool effectiveness and field adequacy.
Resumo:
This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDARderived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.
Resumo:
Depuis plus de 10 ans les modèles numériques d'altitude (MNA) produits par technologie de « light detection and ranging » (« LIDAR ») ont fourni de nouveaux outils très utiles pour des études géomorphologiques, particulièrement dans le cas des glissements de terrain. Le balayage laser terrestre (« TLS ») permet une utilisation très souple. Le TLS peut être employé pour la surveillance ou dans des situations d'urgence qui nécessitent une acquisition rapide d'un MNA afin d'évaluer l'aléa. Au travers de trois exemples, nous démontrons l'utilité du TLS pour la quantification de volumes de glissements de terrain, la création de profils et l'analyse de séries temporelles. Ces études de cas sont des glissements de terrain situés dans les argiles sensibles de l'est du Canada (Québec, Canada) ou de petits glissements rotationnels dans les berges d'une rivière (Suisse).
Resumo:
Phototropism is an adaptive response allowing plants to optimize photosynthetic light capture. This is achieved by asymmetric growth between the shaded and lit sides of the stimulated organ. In grass seedlings, the site of phototropin-mediated light perception is distinct from the site of bending; however, in dicotyledonous plants (e.g., Arabidopsis), spatial aspects of perception remain debatable. We use morphological studies and genetics to show that phototropism can occur in the absence of the root, lower hypocotyl, hypocotyl apex, and cotyledons. Tissue-specific expression of the phototropin1 (phot1) photoreceptor demonstrates that light sensing occurs in the upper hypocotyl and that expression of phot1 in the hypocotyl elongation zone is sufficient to enable a normal phototropic response. Moreover, we show that efficient phototropism occurs when phot1 is expressed from endodermal, cortical, or epidermal cells and that its local activation rapidly leads to a global response throughout the seedling. We propose that spatial aspects in the steps leading from light perception to growth reorientation during phototropism differ between grasses and dicots. These results are important to properly interpret genetic experiments and establish a model connecting light perception to the growth response, including cellular and morphological aspects.