412 resultados para OXO KETENE DITHIOACETALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because GABA(A) receptors containing alpha 2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha 2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine`s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha 2-GABA(A) receptors (alpha 2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha 2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha 2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mixed-valence complex, [Fe(III)Fe(II)L1(mu-OAc)(2)]BF4 center dot H2O, where the ligand H(2)L1 = 2-{[[3-[((bis-(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The (FeFeII)-Fe-III and Fe-2(III) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1).S-2, where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The (FeFeII)-Fe-III complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe-2(III) complex showed an EPR spectrum due to population of the S-tot = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the (FeFeII)-Fe-III complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 x 10(-3) s(-1); K-m = 4.63 x 10(-3) mol L-1) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe-III. It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(mu-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysergic acid diethylamide (LSD) is a potent hallucinogen that is primarily metabolized to 2-oxo-3-hydroxy-LSD (O-H-LSD) and N-desmethyl-LSD (nor-LSD) by cytochrome P450 complex liver enzymes. Due to its extensive metabolism, there still is an interest in the identification of new metabolites and new routes of its metabolism in humans. In the present study, we investigated whether LSD could be a substrate for horseradish peroxidase or myeloperoxidase (MPO). Using liquid chromatography coupled to UV detection and electrospray ionization mass spectrometry (LC-UV-ESI-MS), we found that both peroxidases were capable of metabolizing LSD to the same compounds that have been observed in vivo (i.e., O-H-LSD and nor-LSD). In addition, we found another major metabolite, N,N-diethyl-7-formamido-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide (FOMBK), which is an opened indolic ring compound. Hydrolysis of FOMBK led to the deformylated compound 7-amino-N,N-diethyl-4-methyl-6-oxo-2,3,4,4a,5,6-hexahydrobenzo[f]quinoline-2-carboxamide. The reactions of LSD with the peroxidases were chemiluminescent and sensitive to inhibition by reactive oxygen scavengers, which indicated that the classic peroxidase cycle is involved in this new alternative metabolic pathway. Considering that MPO is abundant in immune cells and also present in the central nervous system, the degradation pathway described in this study suggests a possible route of LSD metabolism that may occur concurrently with the in vivo reaction catalyzed by the cytochrome P450 system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantum chemical investigations presented in this thesis use hybrid density functional theory to shed light on the catalytic mechanisms of mononuclear non-heme iron oxygenases, accommodating a ferrous ion in their active sites. More specifically, the dioxygen activation process and the subsequent oxidative reactions in the following enzymes were studied: tetrahydrobiopterin-dependent hydroxylases, naphthalene 1,2-dioxygenase and α-ketoglutarate-dependent enzymes. In light of many experimental efforts devoted to the functional mimics of non-heme iron oxygenases, the reactivity of functional analogues was also examined. The computed energetics and the available experimental data served to assess the feasibility of the reaction mechanisms investigated. Dioxygen activation in tetrahydrobiopterin- and α-ketoglutarate-dependent enzymes were found to involve a high-valent iron-oxo species, which was then capable of substrate hydroxylation. In the case of naphthalene 1,2-dioxygenase, the reactivity of an iron(III)-hydroxperoxo species toward the substrate was investigated and compared to the biomimetic counterpart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, mechanistic and synthetic studies on transformations of H-phosphonates into DNA analogues containing P-S or P-C bonds are described. Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated. In light of these studies, the reported stereoselective sulfurisation of dinucleoside H-phosphonates and benzoylphosphonates in the presence of DBU was proved to be incorrect. Efficient protocols for the synthesis of new nucleotide analogues with non-ionic C-phosphonate internucleotide linkages were developed. The synthesis of dinucleoside 2-pyridylphosphonates was successfully performed by a DBU-promoted reaction of H-phosphonate diesters with N-methoxypyridinium salts. The thio analogues, 2-pyridyl- and 4-pyridyl phosphonothioate diesters, could be obtained by modifying the reactions developed for their oxo counterparts. Dinucleoside 3-pyridylphosphonates were prepared via a palladium(0)-catalysed cross coupling strategy that could be extended also to the synthesis of nucleotide analogues with metal-complexing properties, i.e. terpyridyl- and bipyridylphosphonate derivatives. Oligonucleotides modified with pyridylphosphonate internucleotide linkages have been prepared and preliminary studies on their hybridisation properties and resistance towards enzymatic degradation were performed. Finally, nucleotidic units for the incorporation of pyridylphosphonate groups at the 5’-terminus of oligonucleotides were designed. Condensations of such units with a suitably protected nucleoside afforded after oxidation the expected dinucleoside (3’-5’)-phosphates with pyridylphosphonate monoester functions at the 5’-ends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Synthese und Charakterisierung von Bisphenolato-Komplexen des Titans und Vanadiums werden beschrieben.Neben dem Methylkomplex wurde eine Reihe von Bisphenolato-Komplexen des Titan(IV) der Zusammensetzung (tbmp)(o-C6H4CH2NMe2)TiX (mit X = CH2SiMe3, CH2Ph, OTf) synthetisiert. Der Methylkomplex wurde mit B(C6F5)3 oder (tbmp)(tbmpH)Al zum Komplexkation [(tbmp)(o-C6H4CH2NMe2)Ti]+ umgesetzt und dessen Reaktivität gegenüber 1-Olefinen untersucht.Ausgehend von (tbmp)TiCl2 wurden der Dimethylkomplex (tbmp)TiMe2 und der Dibenzylkomplex (tbmp)Ti(CH2Ph)2 dargestellt und strukturell charakterisiert. Der Dibenzylkomplex liegt im Kristall als Dimer vor, verbrückt über ein Dioxan-Molekül, während der Dimethylkomplex auch im Feststoff monomer ist. Dies ist das erste Beispiel für die Koordinationszahl fünf bei Bisphenolato-Titan-Komplexen.Polymerisationsversuche mit (tbmp)TiMe2 und B(C6F5)3 weisen auf eine hohe Reaktivität und geringe Stabilität des aktivierten Komplexes hin, die zu geringen Polymer-Ausbeuten führt.Im Falle des Vanadiums konnten trotz Schwierigkeiten aufgrund der hohen Redoxaktivität dieses Elements mehrere Komplexe dargestellt werden. Synthetisiert und strukturell charakterisiert wurden der Komplex (mbmp)V(O)(CH2SiMe3)·B(C6F5)3, das erste Beispiel für ein Boranaddukt eines Oxokomplexes des fünfwertigen Vanadiums, und der erste Di(bisphenolato)-Komplex des vierwertigen Vanadiums, (tbmp)2V.Desweiteren gelang die Darstellung von (mbmp)V(O)(CH2SiMe2Ph)·B(C6F5)3, (tbmp)VCl(THF)2 und (mbmp)2V. Die Alkylkomplexe des fünfwertigen Vanadiums waren mit B(C6F5)3 für die Polymerisation von Ethen nicht aktivierbar. Hingegen bildete (tbmp)VCl(THF)2 mit DEAC ein sehr aktives System für die Polymerisation von Ethen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit hatte zum Ziel, die enzymatische Deglucosylierung von Strictosidin in Zellsuspensionskulturen von Rauvolfia serpentina zu charakterisieren.Ein Verfahren zur Isolierung und Reinigung von Strictosidin aus pflanzlicher Zellkulturen wurde entwickelt. Zwei somatische Hybridzellkulturen zwischen R. serpentina und Rhazya stricta wurden als potenzielle Quelle dieses Glucoalkaloides untersucht. Der Sekundärstoffwechsel der pflanzlichen Zellen wurde mit Methyljasmonat induziert und 15 Stoffe wurden identifiziert, u. a. das neue Indolalkaloid 3-Oxo-rhazinilam. Die Gehaltsänderung von 7 Indolalkaloiden nach Behandlung mit Methyljasmonat wurde untersucht.Deglucosylierung von Strictisidin bei in E. coli exprimierter Raucaffricin Glucosidase wurde detektiert.Die Strictosidin Glucosidase kodierende cDNA wurde aus R. serpentina Zellsuspensionskulturen cloniert und in E. coli exprimiert. Das Enzyme wurde mit Hilfe des Inteintages gereinigt und seine Eigenschaften wurden untersucht, u. a. optimale Temperatur und pH Wert und Substratspezifität.Die Produkte von der enzymatischen Strictosidinhydrolyse wurden als Cathenamin (unter normalen Bedingungen) und Sitsirikin und Isositsirikin (im Gegenwart von Reduktoren) identifiziert. Das neue Indolalkaloid 3-Isocorreantin A wurde nach der enzymatischen Deglucosylierung von Dolichantosid (Nß-Methylstrictosidin) gebildet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkaloide, im allgemeinen Stickstoffheterocyclen, sind wichtige Vorläuferverbindungen von pharmakologisch aktiven Substanzen. Die stereoselektive Synthese von Stickstoffheterocyclen ist von großem Interesse für die Entdeckung und Entwicklung von Arzneistoffen.In der Arbeit wurden Glycosylamine vom Typ des 2,3,4,6-Tetra-O-pivaloyl-?-D-galactosylamins bzw. des 2,3,4-Tri-O-pivaloyl-?-D-arabinosylamins zur diastereoselektiven Synthese mehrfach substituierter Stickstoffheterocyclen eingesetzt. In einer Tandem-Mannich-Michael-Reaktion eines Glycosylimins mit dem Danishefsky-Dien wurden die in Position 6 substituierten Dehydropiperidinone aufgebaut. In einer mehrstufigen Synthesesequenz konnte das 4a-Epimere des natürlichen Pumiliotoxin C als Hydrochlorid dargestellt werden.Mittels der Tandem-Mannich-Michael-Reaktion wurden auch 6,6`-disubstituierte Dehydropiperidinone dargestellt. Die Darstellung zweier Aza-spiro-Verbindungen gelang erstmals ausgehend von den Ketonen Cyclohexanon und 3-Methyl-cyclohexanon über die Glycosylketimine. Das in dieser Reaktion gefundene Nebenprodukt N-Glycosyl-6-(2´-oxo-propyl)-2,3 dehydropiperidin-4-on diente als Ausgangssubstanz für die Pinidinolsynthese.In der angewendeten Weise eignen sich Glycosylamine sehr gut für die stereoselektive Synthese von Stickstoffheterocyclen. Meistens werden die chirale Piperidinalkaloidvorläufer in hohen Ausbeuten und Diastereoselektivitäten erhalten.