563 resultados para OBESITY MORBID
Resumo:
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis.
Resumo:
BACKGROUND Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI) however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1) examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA), temperament traits and plasma endocannabinoid concentrations; and 2) explore the association and interaction between MVPA, temperament, endocannabinoids and BMI. METHODS Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls). The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA. RESULTS Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG) were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039) and high MVPA levels were associated with elevated anandamide (AEA) levels (b = 0.16, p = .049) and N-oleylethanolamide (OEA) levels (b = 0.22, p = .004), as well as high Novelty seeking (b = 0.18, p<.001) and low Harm avoidance (b = -0.16, p<.001). CONCLUSIONS Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.
Resumo:
Results related to overweight and obesity in 2013: Participation to the school screening program was satisfactory in 2013, but a bit less than in previous years (4220 children seen out of a total of approximately 6000 eligible ones). Less than maximal participation to the screening program can relate to different factors, e.g.; a trend for obese children to decline participation; lack of time of school nurses to complete the screening program due to competing duties at health centre level. Good organization by the school nurses and adequate facilities for screening are also important factors for a good conduct of the screening program.
Resumo:
To enhance the prevention and intervention efforts of childhood obesity, there is a strong need for the early detection of psychological factors contributing to its development and maintenance. Rather than a stable condition, childhood obesity represents a dynamic process, in which behavior, cognition and emotional regulation interact mutually with each other. Family structure and context, that is, parental and familial attitudes, activity, nutritional patterns as well as familial stress, have an important role with respect to the onset and maintenance of overweight and obesity. Behavioral and emotional problems are found in many, though not all, obese children, with a higher prevalence in clinical, treatment-seeking samples. The interrelatedness between obesity and psychological problems seems to be twofold, in that clinically meaningful psychological distress might foster weight gain and obesity may lead to psychosocial problems. The most frequently implicated psychosocial factors are externalizing (impulsivity and attention-deficit hyperactivity disorder) and internalizing (depression and anxiety) behavioral problems and uncontrolled eating behavior. These findings strengthen the need to further explore the interrelatedness between psychological problems and childhood obesity.
Resumo:
BACKGROUND AND AIMS: Normal weight obesity (NWO) is defined as an excessive body fat associated with a normal body mass index (BMI) and has been associated with early inflammation, but its relationship with cardiovascular risk factors await investigation. METHODS AND RESULTS: Cross-sectional study including 3213 women and 2912 men aged 35-75 years to assess the clinical characteristics of NWO in Lausanne, Switzerland. Body fat was assessed by bioimpedance. NWO was defined as a BMI<25 kg/m(2) and a % body fat ≥66(th) gender-specific percentiles. The prevalence of NWO was 5.4% in women and less than 3% in men, so the analysis was restricted to women. NWO women had a higher % of body fat than overweight women. After adjusting for age, smoking, educational level, physical activity and alcohol consumption, NWO women had higher blood pressure and lipid levels and a higher prevalence of dyslipidaemia (odds-ratio=1.90 [1.34-2.68]) and fasting hyperglycaemia (odds-ratio=1.63 [1.10-2.42]) than lean women, whereas no differences were found between NWO and overweight women. Conversely, no differences were found between NWO and lean women regarding levels of CRP, adiponectin and liver markers (alanine aminotransferase, aspartate aminotransferase and gamma glutamyl transferase). Using other definitions of NWO led to similar conclusions, albeit some differences were no longer significant. CONCLUSION: NWO is almost nonexistent in men. Women with NWO present with higher cardiovascular risk factors than lean women, while no differences were found for liver or inflammatory markers. Specific screening of NWO might be necessary in order to implement cardiovascular prevention.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
Resting metabolic rate (RMR) and the thermic effect of a meal (TEM) were measured in a group of 26 prepubertal children divided into three groups: (1) children with both parents obese (n = 8, group OB2); (2) children with no obese parents and without familial history of obesity (n = 8, OB0); and (3) normal body weight children (n = 10, C). Average RMR was similar in OB2 and OB0 children (4785 +/- 274 kJ/day vs 5091 +/- 543 kJ/day), but higher (P < 0.05) than in controls (4519 +/- 322 kJ/day). Adjusted for fat-free mass (FFM) mean RMRs were comparable in the three groups of children (4891 +/- 451 kJ/day vs 5031 +/- 451 kJ/day vs 4686 +/- 451 kJ/day in OB2, OB0, and C, respectively). The thermic response to the mixed meal was similar in OB2, OB0 and C groups. The TEM calculated as the percentage of RMR was lower (P < 0.05) in obese than in control children: 10.2% +/- 3.1% vs 10.9% +/- 4.3% vs 14.0% +/- 4.3% in OB2, OB0, and C, respectively. The similar RMR as absolute value as well as adjusted for FFM, and the comparable thermic effect of food in the obese children with or without familial history of obesity, failed to support the view that family history of obesity can greatly influence the RMR and the TEM of the obese child with obese parents.
Resumo:
CONTEXT Glucose-dependent insulinotropic peptide (GIP) has a central role in glucose homeostasis through its amplification of insulin secretion; however, its physiological role in adipose tissue is unclear. OBJECTIVE Our objective was to define the function of GIP in human adipose tissue in relation to obesity and insulin resistance. DESIGN GIP receptor (GIPR) expression was analyzed in human sc adipose tissue (SAT) and visceral adipose (VAT) from lean and obese subjects in 3 independent cohorts. GIPR expression was associated with anthropometric and biochemical variables. GIP responsiveness on insulin sensitivity was analyzed in human adipocyte cell lines in normoxic and hypoxic environments as well as in adipose-derived stem cells obtained from lean and obese patients. RESULTS GIPR expression was downregulated in SAT from obese patients and correlated negatively with body mass index, waist circumference, systolic blood pressure, and glucose and triglyceride levels. Furthermore, homeostasis model assessment of insulin resistance, glucose, and G protein-coupled receptor kinase 2 (GRK2) emerged as variables strongly associated with GIPR expression in SAT. Glucose uptake studies and insulin signaling in human adipocytes revealed GIP as an insulin-sensitizer incretin. Immunoprecipitation experiments suggested that GIP promotes the interaction of GRK2 with GIPR and decreases the association of GRK2 to insulin receptor substrate 1. These effects of GIP observed under normoxia were lost in human fat cells cultured in hypoxia. In support of this, GIP increased insulin sensitivity in human adipose-derived stem cells from lean patients. GIP also induced GIPR expression, which was concomitant with a downregulation of the incretin-degrading enzyme dipeptidyl peptidase 4. None of the physiological effects of GIP were detected in human fat cells obtained from an obese environment with reduced levels of GIPR. CONCLUSIONS GIP/GIPR signaling is disrupted in insulin-resistant states, such as obesity, and normalizing this function might represent a potential therapy in the treatment of obesity-associated metabolic disorders.
Resumo:
Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.
Resumo:
The endocrine disruption hypothesis asserts that exposure to small amounts of some chemicals in the environment may interfere with the endocrine system and lead to harmful effects in wildlife and humans. Many of these chemicals may interact with members of the nuclear receptor superfamily. Peroxisome proliferator-activated receptors (PPARs) are such candidate members, which interact with many different endogenous and exogenous lipophilic compounds. More particularly, the roles of PPARs in lipid and carbohydrate metabolism raise the question of their activation by a sub-class of pollutants, tentatively named "metabolic disrupters". Phthalates are abundant environmental micro-pollutants in Europe and North America and may belong to this class. Mono-ethyl-hexyl-phthalate (MEHP), a metabolite of the widespread plasticizer di-ethyl-hexyl-phthalate (DEHP), has been found in exposed organisms and interacts with all three PPARs. A thorough analysis of its interactions with PPARgamma identified MEHP as a selective PPARgamma modulator, and thus a possible contributor to the obesity epidemic.
Resumo:
ABSTRACT: BACKGROUND: The ability of different obesity indices to predict cardiovascular risk is still debated in youth and few data are available in sub Saharan Africa. We compared the associations between several indices of obesity and cardiovascular risk factors (CVRFs) in late adolescence in the Seychelles. METHODS: We measured body mass index (BMI), waist circumference, waist/hip ratio (WHiR), waist/height ratio (WHtR) and percent fat mass (by bioimpedance) and 6 CVRFs (blood pressure, LDL-cholesterol, HDL-cholesterol, triglycerides, fasting blood glucose and uric acid) in 423 youths aged 19-20 years from the general population. RESULTS: The prevalence of overweight/obesity and several CVRFs was high, with substantial sex differences. Except for glucose in males and LDL-cholesterol in females, all obesity indices were associated with CVRFs. BMI consistently predicted CVRFs at least as well as the other indices. Linear regression on BMI had standardized regression coefficients of 0.25-0.36 for most CVRFs (p<0.01) and ROC analysis had an AUC between 60%-75% for most CVRFs. BMI also predicted well various combinations of CVRFs: 36% of male and 16% of female lean subjects (BMI
Resumo:
Overweight and obesity are associated with arterial hypertension. Given the large increase in the obesity prevalence worldwide, the number of obese patients with hypertension is likely to increase substantially in the near future. Overweight and obese patients are exposed to an important metabolic and cardiovascular risk. The understanding of the mechanisms linking obesity to hypertension is important for specific prevention and therapy in this population. There is some evidence that obesity is associated with an increased aldosterone level. To date, 2 mechanisms may explain the interaction of fat tissue with the renin-angiotensin-aldosterone system, and therefore explain, in part, obesity-related hypertension. First, human adipose tissue produces several components of the renin-angiotensin-aldosterone system, mainly adipose tissue-derived angiotensinogen. Second, increased fatty acid production in the obese patient, especially nonesterified fatty acids, might stimulate aldosterone production, independent of renin. A better understanding of these mechanisms might have implications for the management of hypertension in overweight and obese patients. Because aldosterone also is associated with blood glucose and blood lipids, selective aldosterone blockade may represent a particularly attractive therapeutic strategy in obese patients with a clustering of cardiovascular risk factors.
Resumo:
Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.
Resumo:
Binge eating disorder is one of the most frequent comorbid mental disorders associated with overweight and obesity. Binge eating disorder patients often suffer from other mental disorders and longitudinal studies indicate a continuous weight gain during the long-term course. As in other eating disorders gender is a risk factor, but the proportion of male binge eating disorder patients is surprisingly high.In young women with type 1 diabetes the prevalence of subclinical types of bulimia nervosa is increased. In addition, insulin purging as a characteristic compensatory behavior in young diabetic women poses a considerable problem. In patients with type 1 diabetes, disturbed eating and eating disorders are characterized by insufficient metabolic control and early development of late diabetic sequelae. Patients with type 2 diabetes are often overweight or obese. Binge eating disorder does not occur more frequently in patients with type 2 diabetes compared to healthy persons. However, the comorbidity of binge eating disorder and diabetes type 2 is associated with weight gain and insulin resistance. Especially in young diabetic patients a screening procedure for disturbed eating or eating disorders seems to be necessary. Comorbid patients should be offered psychotherapy.