896 resultados para Nonlinear contact stiffness
Resumo:
Migmatization of gabbroic rocks at 2-3 kbar has occurred in the metamorphic contact aureole of a mafic pluton in the Fuerteventura Basal Complex (Canary Island;). Migmatites are characterized by a dense network: of closely spaced millimetre-wide leucocratic veins with perfectly preserved igneous textures. They are all relatively enriched in Al, Na I: Sr Ba, Nb, Y and the rare earth elements compared with the unaffected country rock beyond the aureole. Migmatization under such low-pressure conditions war possible because of the unusual tectonic and magmatic contact in which ii occurred. Multiple basic intrusions associated with extrusive volcanic activity created high heat flow in a small area. Alkaline and metasomatized rocks present in the country rock of the intruding pluton were leached by high-temperature fluids during contact metamorphism. These enriched fluids then favoured partial melting of the host gabbroic rocks, and contaminated both the leucosomes and melanosomes. A transpressive tectonic setting at the time of intrusion created shearing along the contact between the intrusion and its host rock. This shearing enhanced circulation of the fluids and allowed segregation of the nea-formed melts from their restite by opening tension veins into which the melts migrated. Depending on the relative timing of melt segregation and recrystallization leucosomes range in composition from a 40-60% mixture of clinopyroxene (+/- amphibole) and plagioclase to almost pure feldspathic veins. Comparable occurrences of gabbros migmatized at low pressure are expected only at a snail scale in localized areas of high heat flow in the presence of fluids, such as in. mid-ocean ridges or ocean-islands.
Resumo:
In the present study, we analyzed 58 samples of the lesser white-toothed shrew group (Crocidura suaveolens) from eastern Europe and Turkey, where, according to previous publications, three different mitochondrial and nuclear lineages are present. We sequenced 799 bp of the nuclear BRCA1 gene and 400 bp of the mitochondrial cytochrome b gene to: (1) determine a potential contact zone between the lineages; (2) detect hybridizations and introgressions between them; and (3) comment on the level of reproductive isolation of the different lineages. We revealed two zones of hybridization in Turkey, of which the first occurred west of the Bosphorus Straits (three hybrids) and the second in Anatolia (twelve hybrids). In the latter, the nuclear markers revealed a large zone of hybridization, of approximately 600 km. It also revealed that hybrids of first, second, and later generations are present within the populations, and therefore that the reproductive isolation between the different lineages is weak.
Resumo:
We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.
Resumo:
Age is the main clinical determinant of large artery stiffness. Central arteries stiffen progressively with age, whereas peripheral muscular arteries change little with age. A number of clinical studies have analyzed the effects of age on aortic stiffness. Increase of central artery stiffness with age is responsible for earlier wave reflections and changes in pressure wave contours. The stiffening of aorta and other central arteries is a potential risk factor for increased cardiovascular morbidity and mortality. Arterial stiffening with aging is accompanied by an elevation in systolic blood pressure (BP) and pulse pressure (PP). Although arterial stiffening with age is a common situation, it has now been confirmed that older subjects with increased arterial stiffness and elevated PP have higher cardiovascular morbidity and mortality. Increase in aortic stiffness with age occurs gradually and continuously, similarly for men and women. Cross-sectional studies have shown that aortic and carotid stiffness (evaluated by the pulse wave velocity) increase with age by approximately 10% to 15% during a period of 10 years. Women always have 5% to 10% lower stiffness than men of the same age. Although large artery stiffness increases with age independently of the presence of cardiovascular risk factors or other associated conditions, the extent of this increase may depend on several environmental or genetic factors. Hypertension may increase arterial stiffness, especially in older subjects. Among other cardiovascular risk factors, diabetes type 1 and 2 accelerates arterial stiffness, whereas the role of dyslipidemia and tobacco smoking is unclear. Arterial stiffness is also present in several cardiovascular and renal diseases. Patients with heart failure, end stage renal disease, and those with atherosclerotic lesions often develop central artery stiffness. Decreased carotid distensibility, increased arterial thickness, and presence of calcifications and plaques often coexist in the same subject. However, relationships between these three alterations of the arterial wall remain to be explored.
Resumo:
The rise and consequences of polyploidy in vertebrates, whose origin was associated with genome duplications, may be best studied in natural diploid and polyploid populations. In a diploid/tetraploid (2n/4n) geographic contact zone of Palearctic green toads in northern Kyrgyzstan, we examine 4ns and triploids (3n) of unknown genetic composition and origins. Using mitochondrial and nuclear sequence, and nuclear microsatellite markers in 84 individuals, we show that 4n (Bufo pewzowi) are allopolyploids, with a geographically proximate 2n species (B. turanensis) being their maternal ancestor and their paternal ancestor as yet unidentified. Local 3n forms arise through hybridization. Adult 3n mature males (B. turanensis mtDNA) have 2n mothers and 4n fathers, but seem distinguishable by nuclear profiles from partly aneuploid 3n tadpoles (with B. pewzowi mtDNA). These observations suggest multiple pathways to the formation of triploids in the contact zone, involving both reciprocal origins. To explain the phenomena in the system, we favor a hypothesis where 3n males (with B. turanensis mtDNA) backcross with 4n and 2n females. Together with previous studies of a separately evolved, sexually reproducing 3n lineage, these observations reveal complex reproductive interactions among toads of different ploidy levels and multiple pathways to the evolution of polyploid lineages.
Resumo:
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
The stiffness of tumor cells varies during cancer progression. In particular, metastatic carcinoma cells analyzed by Atomic Force Microscopy (AFM) appear softer than non-invasive and normal cells. Here we examined by AFM how the stiffness of melanoma cells varies during progression from non-invasive Radial Growth Phase (RGP) to invasive Vertical Growth Phase (VGP) and to metastatic tumors. We show that transformation of melanocytes to RGP and to VGP cells is characterized by decreased cell stiffness. However, further progression to metastatic melanoma is accompanied by increased cell stiffness and the acquisition of higher plasticity by tumor cells, which is manifested by their ability to greatly augment or reduce their stiffness in response to diverse adhesion conditions. We conclude that increased plasticity, rather than decreased stiffness as suggested for other tumor types, is a marker of melanoma malignancy. These findings advise caution about the potential use of AFM for melanoma diagnosis. FROM THE CLINICAL EDITOR: This study investigates the changes to cellular stiffness in metastatic melanoma cells examined via atomic force microscopy. The results demonstrate that increased plasticity is a marker of melanoma malignancy, as opposed to decreased stiffness.
Resumo:
We prove rigidity and vanishing theorems for several holomorphic Euler characteristics on complex contact manifolds admitting holomorphic circle actions preserving the contact structure. Such vanishings are reminiscent of those of LeBrun and Salamon on Fano contact manifolds but under a symmetry assumption instead of a curvature condition.
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.