963 resultados para Non-linear functions
Resumo:
In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
A method for dealing with monotonicity constraints in optimal control problems is used to generalize some results in the context of monopoly theory, also extending the generalization to a large family of principal-agent programs. Our main conclusion is that many results on diverse economic topics, achieved under assumptions of continuity and piecewise differentiability in connection with the endogenous variables of the problem, still remain valid after replacing such assumptions by two minimal requirements.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
It is a well known phenomenon that the constant amplitude fatigue limit of a large component is lower than the fatigue limit of a small specimen made of the same material. In notched components the opposite occurs: the fatigue limit defined as the maximum stress at the notch is higher than that achieved with smooth specimens. These two effects have been taken into account in most design handbooks with the help of experimental formulas or design curves. The basic idea of this study is that the size effect can mainly be explained by the statistical size effect. A component subjected to an alternating load can be assumed to form a sample of initiated cracks at the end of the crack initiation phase. The size of the sample depends on the size of the specimen in question. The main objective of this study is to develop a statistical model for the estimation of this kind of size effect. It was shown that the size of a sample of initiated cracks shall be based on the stressed surface area of the specimen. In case of varying stress distribution, an effective stress area must be calculated. It is based on the decreasing probability of equally sized initiated cracks at lower stress level. If the distribution function of the parent population of cracks is known, the distribution of the maximum crack size in a sample can be defined. This makes it possible to calculate an estimate of the largest expected crack in any sample size. The estimate of the fatigue limit can now be calculated with the help of the linear elastic fracture mechanics. In notched components another source of size effect has to be taken into account. If we think about two specimens which have similar shape, but the size is different, it can be seen that the stress gradient in the smaller specimen is steeper. If there is an initiated crack in both of them, the stress intensity factor at the crack in the larger specimen is higher. The second goal of this thesis is to create a calculation method for this factor which is called the geometric size effect. The proposed method for the calculation of the geometric size effect is also based on the use of the linear elastic fracture mechanics. It is possible to calculate an accurate value of the stress intensity factor in a non linear stress field using weight functions. The calculated stress intensity factor values at the initiated crack can be compared to the corresponding stress intensity factor due to constant stress. The notch size effect is calculated as the ratio of these stress intensity factors. The presented methods were tested against experimental results taken from three German doctoral works. Two candidates for the parent population of initiated cracks were found: the Weibull distribution and the log normal distribution. Both of them can be used successfully for the prediction of the statistical size effect for smooth specimens. In case of notched components the geometric size effect due to the stress gradient shall be combined with the statistical size effect. The proposed method gives good results as long as the notch in question is blunt enough. For very sharp notches, stress concentration factor about 5 or higher, the method does not give sufficient results. It was shown that the plastic portion of the strain becomes quite high at the root of this kind of notches. The use of the linear elastic fracture mechanics becomes therefore questionable.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for sodium naproxen in ethanol + water cosolvent mixtures, were evaluated from solubility data determined at temperatures from (278.15 to 308.15) K. The drug solubility was greatest in neat water and lowest in neat ethanol at all the temperatures studied. By means of non-linear enthalpy-entropy compensation analysis, it follows that the dissolution process of this drug in ethanol-rich mixtures is entropy-driven, whereas, in water-rich mixtures the process is enthalpy-driven.
Resumo:
By using the van't Hoff and Gibbs equations the apparent thermodynamic functions Gibbs energy, enthalpy, and entropy of solution for triclocarban in ethanol + propylene glycol mixtures were evaluated from solubility data determined at temperatures from (293.15 to 313.15) K. The drug solubility was greatest in the mixture with 0.60 in mass fraction of ethanol and lowest in neat propylene glycol at almost all the temperatures studied. Non-linear enthalpy-entropy compensation is found indicating apparently different mechanisms of the solution process according to the mixtures composition.
Resumo:
Apparent thermodynamic functions, Gibbs energy, enthalpy and entropy of solution and mixing, for methocarbamol in ethanol + water mixtures, were evaluated from solubility data determined at temperatures from 293.15 K to 313.15 K and from calorimetric values of drug fusion. The drug solubility was greatest in the mixtures with 0.70 or 0.80 mass fraction of ethanol and lowest in neat water across all temperatures studied. Non-linear enthalpy-entropy compensation was found for the dissolution processes. Accordingly, solution enthalpy drives the respective processes in almost all the solvent systems analyzed.
Resumo:
This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
This paper studies the effect of time delay on the active non-linear control of dynamically loaded flexible structures. The behavior of non-linear systems under state feedback control, considering a fixed time delay for the control force, is investigated. A control method based on non-linear optimal control, using a tensorial formulation and state feedback control is used. The state equations and the control forces are expressed in polynomial form and a performance index, quadratic in both state vector and control forces, is used. General polynomial representations of the non-linear control law are obtained and implemented for control algorithms up to the fifth order. This methodology is applied to systems with quadratic and cubic non-linearities. Strongly non-linear systems are tested and the effectiveness of the control system including a delay for the application of control forces is discussed. Numerical results indicate that the adopted control algorithm can be efficient for non-linear systems, chiefly in the presence of strong non-linearities but increasing time delay reduces the efficiency of the control system. Numerical results emphasize the importance of considering time delay in the project of active structural control systems.
Resumo:
This paper presents a study on the dynamics of the rattling problem in gearboxes under non-ideal excitation. The subject has being analyzed by a number of authors such as Karagiannis and Pfeiffer (1991), for the ideal excitation case. An interesting model of the same problem by Moon (1992) has been recently used by Souza and Caldas (1999) to detect chaotic behavior. We consider two spur gears with different diameters and gaps between the teeth. Suppose the motion of one gear to be given while the motion of the other is governed by its dynamics. In the ideal case, the driving wheel is supposed to undergo a sinusoidal motion with given constant amplitude and frequency. In this paper, we consider the motion to be a function of the system response and a limited energy source is adopted. Thus an extra degree of freedom is introduced in the problem. The equations of motion are obtained via a Lagrangian approach with some assumed characteristic torque curves. Next, extensive numerical integration is used to detect some interesting geometrical aspects of regular and irregular motions of the system response.
Resumo:
This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.
Resumo:
In this work, image based estimation methods, also known as direct methods, are studied which avoid feature extraction and matching completely. Cost functions use raw pixels as measurements and the goal is to produce precise 3D pose and structure estimates. The cost functions presented minimize the sensor error, because measurements are not transformed or modified. In photometric camera pose estimation, 3D rotation and translation parameters are estimated by minimizing a sequence of image based cost functions, which are non-linear due to perspective projection and lens distortion. In image based structure refinement, on the other hand, 3D structure is refined using a number of additional views and an image based cost metric. Image based estimation methods are particularly useful in conditions where the Lambertian assumption holds, and the 3D points have constant color despite viewing angle. The goal is to improve image based estimation methods, and to produce computationally efficient methods which can be accomodated into real-time applications. The developed image-based 3D pose and structure estimation methods are finally demonstrated in practise in indoor 3D reconstruction use, and in a live augmented reality application.