820 resultados para NIS mRNA poly(A) tail
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
We have investigated the changes in the responses to noradrenaline of isolated tail arteries of spontaneously hypertensive (SHR) and renovascular hypertensive rats (Wistar-Kyoto: two-kidney, one-clip model, WKY:2K1C) compared with normotensive (Wistar-Kyoto, WKY) rats. Renovascular hypertension was induced by 4 weeks' unilateral renal artery clipping. Arteries were vasoconstricted with exogenous noradrenaline, electrical field stimulation or high potassium. The effects of the latter two stimuli were abolished by reserpine and so were presumably dependent on the presence of endogenous noradrenaline. In the SHR the maximal vasoconstriction produced by all three stimuli was greater than in WKY. Dose-response curves were steeper and there was no change in threshold. Vascular mass was greater. We interpret these results as showing an increase in vascular reactivity in the SHR caused by structural adaptation. The WKY:2K1C responses to noradrenaline could also be explained in terms of structural adaptation but there was no increase in vascular mass. Sensitivity to potassium and electrical stimulation was decreased, suggesting a defect in vascular neurotransmission. This was supported by the observations of a decreased arterial noradrenaline content and of decreased sensitivity to cocaine.
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
Canine distemper virus (CDV) produces a glycosylated type I fusion protein (F) with an internal hydrophobic signal sequence beginning around 115 residues downstream of the first AUG used for translation initiation. Cleavage of the signal sequence yields the F0 molecule, which is cleaved into the F1 and F2 subunits. Surprisingly, when all in-frame AUGs located in the first third of the F gene were mutated a protein of the same molecular size as the F0 molecule was still expressed from both the Onderstepoort (OP) and A75/17-CDV F genes. We designated this protein, which is initiated from a non-AUG codon protein Fx. Site-directed mutagenesis allowed to identify codon 85, a GCC codon coding for alanine, as the most likely position from which translation initiation of Fx occurs in OP-CDV. Deletion analysis demonstrated that at least 60 nucleotides upstream of the GCC codon are required for efficient Fx translation. This sequence is GC-rich, suggesting extensive folding. Secondary structure may therefore be important for translation initiation at codon 85.
Resumo:
Differential display technique was applied in order to identify transcripts which are present in axenic amastigotes but not in promastigotes of the Leishmania panamensis parasites. One of them was cloned and the sequence reveals an open reading frame of 364 amino acids (aprox. 40 kDa). The deduced protein is homologous to the serine/threonine protein kinases and specially to the mitogen activates protein kinases from eukaryotic species. Southern blot analysis suggest that this transcript, named lpmkh, is present in the genome of the parasite as a single copy gene. These results could imply that lpmkh could be involved in the differentiation process or the preservation of amastigotes in axenic conditions.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.
Resumo:
Integrating and expressing stably a transgene into the cellular genome remain major challenges for gene-based therapies and for bioproduction purposes. While transposon vectors mediate efficient transgene integration, expression may be limited by epigenetic silencing, and persistent transposase expression may mediate multiple transposition cycles. Here, we evaluated the delivery of the piggyBac transposase messenger RNA combined with genetically insulated transposons to isolate the transgene from neighboring regulatory elements and stabilize expression. A comparison of piggyBac transposase expression from messenger RNA and DNA vectors was carried out in terms of expression levels, transposition efficiency, transgene expression and genotoxic effects, in order to calibrate and secure the transposition-based delivery system. Messenger RNA reduced the persistence of the transposase to a narrow window, thus decreasing side effects such as superfluous genomic DNA cleavage. Both the CTF/NF1 and the D4Z4 insulators were found to mediate more efficient expression from a few transposition events. We conclude that the use of engineered piggyBac transposase mRNA and insulated transposons offer promising ways of improving the quality of the integration process and sustaining the expression of transposon vectors.
Resumo:
The biocompatibility of a viscous, hydrophobic, bioerodible poly(ortho ester) (POE) intended for intraocular application was investigated. POE was evaluated as a blank carrier and as containing modulators of degradation. Each formulation was injected intracamerally and intravitreally in rabbit eyes, and clinical and histological examinations were performed postoperatively for 2 weeks. In the case of intracameral injections, polymer biocompatibility appeared to depend on the amount injected in the anterior chamber. When 50 microL was administered, the polymer degraded within 2 weeks, and clinical observations showed good biocompatibility of POE with no toxicity to the ocular tissues or increase in intraocular pressure. The injection of a larger volume, 100 microL, of POE, appeared inappropriate because of direct contact of polymeric material with the corneal endothelium, and triggered reversible edema and inflammation in the anterior chamber of the eye that regressed after a few days. After intravitreal administration, POE was well tolerated and no inflammatory reaction developed during the observation period. The polymer degraded slowly, appearing as a round whitish bubble in the vitreous cavity. The presence of modulators of degradation both improved POE biocompatibility and prolonged polymer lifetime in the eye. POE appears to be a promising biomaterial for clinical intraocular application.
Resumo:
The objective of this study is to determine the extent of the problem of poly-drug (multiple-drug) use among patients receiving methadone. The study investigated levels and patterns of cocaine and cannabis use in opiate dependent patients receiving methadone treatment. This research also examines risks associated with injecting cocaine. A total number of 851 methadone patients receiving treatment for opiate related problems participated in the survey from a total number of 1082 patients receiving treatment in these clinics. This figure accounts for 80.1%. Participants reported the frequency and intensity of cocaine and cannabis use. Data collected showed that 42% of the methadone patients are using cannabis on a daily basis and that 77.47% had a history of cocaine use. The figure of cocaine use is an important indicator of the level and extent of cocaine use. It is valuable from a public health perspective to assess needs, and to plan and evaluate services. The survey concluded that cocaine abuse is emerging as a problem in the Irish drug sceneThis resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Since the discovery that genes are split into intron and exons, the studies of the mechanisms involved in splicing pointed to presence of consensus signals in an attempt to generalize the process for all living cells. However, as discussed in the present review, splicing is a theme full of variations. The trans-splicing of pre-mRNAs, the joining of exons from distinct transcripts, is one of these variations with broad distribution in the phylogenetic tree. The biological meaning of this phenomenon is discussed encompassing reactions resembling a possible noise to mechanisms of gene expression regulation. All of them however, can contribute to the generation of life diversity.
Resumo:
This work aimed to study the T helper type 1/2 (Th1/Th2) cytokine profile in a co-infection murine model of Plasmodium chabaudi chabaudi and Leishmania infantum. Expression of interferon-gamma (IFN-g) and interleukin-4 (IL-4) was analyzed, in spleen and liver of C57BL/6 mice, by reverse transcriptase-polymerase chain reaction. High levels of IFN-g expression did not prevent the progression of Leishmania in co-infected mice and Leishmania infection did not interfere with the Th1/Th2 switch necessary for Plasmodium control. The presence of IL-4 at day 28 in co-infected mice, essential for Plasmodium elimination, was probably a key factor on the exacerbation of the Leishmania infection.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.